About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2013 (2013), Article ID 138457, 10 pages
http://dx.doi.org/10.1155/2013/138457
Research Article

LDPE/HDPE/Clay Nanocomposites: Effects of Compatibilizer on the Structure and Dielectric Response

Département de Génie Mécanique, École de Technologie Supérieure (ETS), 1100 Notre-Dame Ouest, Montréal, QC, Canada H3C 1K3

Received 26 July 2013; Accepted 16 August 2013

Academic Editor: John Zhanhu Guo

Copyright © 2013 B. Zazoum et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, and A. Okada, “Preparation and mechanical properties of polypropylene-clay hybrids,” Macromolecules, vol. 30, no. 20, pp. 6333–6338, 1997. View at Scopus
  2. H. Tan and W. Yang, “Toughening mechanisms of nano-composite ceramics,” Mechanics of Materials, vol. 30, no. 2, pp. 111–123, 1998. View at Scopus
  3. Y. Han, Z. Wang, X. Li, J. Fu, and Z. Cheng, “Polymer-layered silicate nanocomposites: synthesis, characterization, properties and applications,” Current Trends in Polymer Science, vol. 6, pp. 1–16, 2001.
  4. X. Kornmann, H. Lindberg, and L. A. Berglund, “Synthesis of epoxy-clay nanocomposites: influence of the nature of the clay on structure,” Polymer, vol. 42, no. 4, pp. 1303–1310, 2001. View at Scopus
  5. L. A. Utracki and M. R. Kamal, “Clay-containing polymeric nanocomposites,” Arabian Journal for Science and Engineering, vol. 27, no. 1, pp. 43–67, 2002. View at Scopus
  6. S. Hotta and D. R. Paul, “Nanocomposites formed from linear low density polyethylene and organoclays,” Polymer, vol. 45, no. 22, pp. 7639–7654, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Zhao and K. He, “Dielectric relaxation of suspensions of nanoscale particles surrounded by a thick electric double layer,” Physical Review B, vol. 74, no. 20, Article ID 205319, 10 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Awaji, Y. Nishimura, S. Choi, Y. Takahashi, T. Goto, and S. Hashimoto, “Toughening mechanism and frontal process zone size of ceramics,” Journal of the Ceramic Society of Japan, vol. 117, no. 1365, pp. 623–629, 2009. View at Scopus
  9. L. Chen and G. Chen, “Relaxation behavior study of silicone rubber crosslinked network under static and dynamic compression by electric response,” Polymer Composites, vol. 30, no. 1, pp. 101–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Kim, N. M. Doss, J. P. Tillotson et al., “High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer,” ACS Nano, vol. 3, no. 9, pp. 2581–2592, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. M. A. Osman, J. E. P. Rupp, and U. W. Suter, “Tensile properties of polyethylene-layered silicate nanocomposites,” Polymer, vol. 46, no. 5, pp. 1653–1660, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Zhang, Z. Liu, Q. Li, Y. Leung, K. Ip, and S. Hark, “Routes to grow well-aligned arrays of ZnSe nanowires and nanorods,” Advanced Materials, vol. 17, no. 11, pp. 1405–1410, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. R. D. Davis, A. J. Bur, M. McBrearty, Y. Lee, J. W. Gilman, and P. R. Start, “Dielectric spectroscopy during extrusion processing of polymer nanocomposites: a high throughput processing/characterization method to measure layered silicate content and exfoliation,” Polymer, vol. 45, no. 19, pp. 6487–6493, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Böhning, H. Goering, A. Fritz et al., “Dielectric study of molecular mobility in poly(propylene-graft-maleic anhydride)/clay nanocomposites,” Macromolecules, vol. 38, no. 7, pp. 2764–2774, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Noda, Y. H. Lee, A. J. Bur et al., “Dielectric properties of nylon 6/clay nanocomposites from on-line process monitoring and off-line measurements,” Polymer, vol. 46, no. 18, pp. 7201–7217, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. P. J. Purohit, J. E. Huacuja-Sánchez, D. Wang et al., “Structure-property relationships of nanocomposites based on polypropylene and layered double hydroxides,” Macromolecules, vol. 44, no. 11, pp. 4342–4354, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Tomer, G. Polizos, C. A. Randall, and E. Manias, “Polyethylene nanocomposite dielectrics: implications of nanofiller orientation on high field properties and energy storage,” Journal of Applied Physics, vol. 109, no. 7, Article ID 074113, 11 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Morawiec, A. Pawlak, M. Slouf, A. Galeski, E. Piorkowska, and N. Krasnikowa, “Preparation and properties of compatibilized LDPE/organo-modified montmorillonite nanocomposites,” European Polymer Journal, vol. 41, no. 5, pp. 1115–1122, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. T. G. Gopakumar, J. A. Lee, M. Kontopoulou, and J. S. Parent, “Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites,” Polymer, vol. 43, no. 20, pp. 5483–5491, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. M. J. Dumont, A. Reyna-Valencia, J. P. Emond, and M. Bousmina, “Barrier properties of polypropylene/organoclay nanocomposites,” Journal of Applied Polymer Science, vol. 103, no. 1, pp. 618–625, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Hasegawa, M. Kawasumi, M. Kato, A. Usuki, and A. Okada, “Preparation and mechanical properties of polypropylene-clay hybrids using a maleic anhydride-modified polypropylene oligomer,” Journal of Applied Polymer Science, vol. 67, no. 1, pp. 87–92, 1998. View at Scopus
  22. N. Hasegawa, H. Okamoto, M. Kato, and A. Usuki, “Preparation and mechanical properties of polypropylene-clay hybrids based on modified polypropylene and organophilic clay,” Journal of Applied Polymer Science, vol. 78, no. 11, pp. 1918–1922, 2000.
  23. M. Kato, A. Usuki, and A. Okada, “Synthesis of polypropylene oligomer-clay intercalation compounds,” Journal of Applied Polymer Science, vol. 66, no. 9, pp. 1781–1785, 1997. View at Scopus
  24. P. Maiti, P. H. Nam, M. Okamoto, N. Hasegawa, and A. Usuki, “Influence of crystallization on intercalation, morphology, and mechanical properties of polypropylene/clay nanocomposites,” Macromolecules, vol. 35, no. 6, pp. 2042–2049, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, and T. C. Chung, “Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties,” Chemistry of Materials, vol. 13, no. 10, pp. 3516–3523, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. P. H. Nam, P. Maiti, M. Okamoto, T. Kotaka, N. Hasegawa, and A. Usuki, “A hierarchical structure and properties of intercalated polypropylene/clay nanocomposites,” Polymer, vol. 42, no. 23, pp. 9633–9640, 2001. View at Scopus
  27. Y. Wang, F. B. Chen, K. C. Wu, and J. C. Wang, “Shear rheology and melt compounding of compatibilized-polypropylene nanocomposites: effect of compatibilizer molecular weight,” Polymer Engineering and Science, vol. 46, no. 3, pp. 289–302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Kremer and A. Schönhals, Broadband Dielectric Spectroscopy, Springer, New York, NY, USA, 2003.
  29. E. Laredo, M. Grimau, F. Sánchez, and A. Bello, “Water absorption effect on the dynamic properties of nylon-6 by dielectric spectroscopy,” Macromolecules, vol. 36, no. 26, pp. 9840–9850, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. H. M. Le Huy and J. Rault, “Remarks on the α and β transitions in swollen polyamides,” Polymer, vol. 35, no. 1, pp. 136–139, 1994. View at Scopus
  31. D. W. McCall and E. W. Anderson, “Dielectric properties of linear polyamides,” The Journal of Chemical Physics, vol. 32, no. 1, pp. 237–241, 1960. View at Scopus