About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2013 (2013), Article ID 173625, 11 pages
http://dx.doi.org/10.1155/2013/173625
Research Article

The Effect of Vacuum Annealing of Magnetite and Zero-Valent Iron Nanoparticles on the Removal of Aqueous Uranium

Interface Analysis Centre, University of Bristol, 121 St. Michael’s Hill, Bristol BS2 8BS, UK

Received 24 July 2013; Revised 22 August 2013; Accepted 4 September 2013

Academic Editor: Andrei Kolmakov

Copyright © 2013 R. A. Crane and T. B. Scott. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W.-X. Zhang, “Nanoscale iron particles for environmental remediation: an overview,” Journal of Nanoparticle Research, vol. 5, no. 3-4, pp. 323–332, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Masciangioli and W.-X. Zhang, “Environmental technologies at the nanoscale,” Environmental Science and Technology, vol. 37, no. 5, pp. 102A–108A, 2003. View at Scopus
  3. R. A. Crane, M. Dickinson, I. C. Popescu, and T. B. Scott, “Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water,” Water Research, vol. 45, no. 9, pp. 2931–2942, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Dickinson and T. B. Scott, “The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent,” Journal of Hazardous Materials, vol. 178, no. 1–3, pp. 171–179, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. F. He, D. Zhao, and C. Paul, “Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones,” Water Research, vol. 44, no. 7, pp. 2360–2370, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Klimkova, M. Cernik, L. Lacinova, J. Filip, D. Jancik, and R. Zboril, “Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching,” Chemosphere, vol. 82, no. 8, pp. 1178–1184, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. T. B. Scott, I. C. Popescu, R. A. Crane, and C. Noubactep, “Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants,” Journal of Hazardous Materials, vol. 186, no. 1, pp. 280–287, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Cui, Y. Feng, W. Ren, T. Zeng, H. Lv, and Y. Pan, “Strategies of large scale synthesis of monodisperse nanoparticles,” Recent Patents on Nanotechnology, vol. 3, no. 1, pp. 32–41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. T. B. Scott, M. Dickinson, R. A. Crane, O. Riba, G. M. Hughes, and G. C. Allen, “The effects of vacuum annealing on the structure and surface chemistry of iron nanoparticles,” Journal of Nanoparticle Research, vol. 12, no. 5, pp. 1765–1775, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Dickinson, T. B. Scott, R. A. Crane, O. Riba, R. J. Barnes, and G. M. Hughes, “The effects of vacuum annealing on the structure and surface chemistry of iron:nickel alloy nanoparticles,” Journal of Nanoparticle Research, vol. 12, no. 6, pp. 2081–2092, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. F. C. Camilo Moura, G. C. Oliveira, M. H. Araujo, J. D. Ardisson, W. A. De Almeida Macedo, and R. M. Lago, “Formation of highly reactive species at the interface Fe°-iron oxides particles by mechanical alloying and thermal treatment: potential application in environmental remediation processes,” Chemistry Letters, vol. 34, no. 8, pp. 1172–1173, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. K. V. Ragnarsdottir and L. Charlet, Uranium Behaviour in Natural Environments, Environmental Mineralogy—Microbial Interactions, Anthropogenic Influences, Contaminated Land and Waste Management, vol. 9 of Mineralogical Society Series, 2000.
  13. C.-B. Wang and W.-X. Zhang, “Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs,” Environmental Science and Technology, vol. 31, no. 7, pp. 2154–2156, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. “Dayta Systems Bristol UK,” 2013, http://www.daytasystems.co.uk/.
  15. A. P. Grosvenor, B. A. Kobe, M. C. Biesinger, and N. S. McIntyre, “Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds,” Surface and Interface Analysis, vol. 36, no. 12, pp. 1564–1574, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Zhang and A. Manthiram, “Experimental study of ferromagnetic chains composed of nanosize Fe spheres,” Physical Review B, vol. 54, no. 5, pp. 3462–3467, 1996. View at Scopus
  17. S. Das, M. J. Hendry, and J. Essilfie-Dughan, “Transformation of two-line ferrihydrite to goethite and hematite as a function of pH and temperature,” Environmental Science and Technology, vol. 45, no. 1, pp. 268–275, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. L. E. Davidson, S. Shaw, and L. G. Benning, “The kinetics and mechanisms of schwertmannite transformation to goethite and hematite under alkaline conditions,” American Mineralogist, vol. 93, no. 8-9, pp. 1326–1337, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. R. M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, Wiley-VCH, 2003.
  20. T. Missana, M. García-Gutiérrez, and V. Fernńdez, “Uranium (VI) sorption on colloidal magnetite under anoxic environment: experimental study and surface complexation modelling,” Geochimica et Cosmochimica Acta, vol. 67, no. 14, pp. 2543–2550, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Mann, N. H. C. Sparks, S. B. Couling, M. C. Larcombe, and R. B. Frankel, “Crystallochemical characterization of magnetic spinels prepared from aqueous solution,” Journal of the Chemical Society, Faraday Transactions 1, vol. 85, no. 9, pp. 3033–3044, 1989. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Murad, “Mössbauer and X-ray data on β-FeOOH (akaganéite),” Clay Minerology, vol. 14, pp. 273–283, 1976.
  23. T. B. Scott, G. C. Allen, P. J. Heard, and M. G. Randell, “Reduction of U(VI) to U(IV) on the surface of magnetite,” Geochimica et Cosmochimica Acta, vol. 69, no. 24, pp. 5639–5646, 2005. View at Publisher · View at Google Scholar · View at Scopus