About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2013 (2013), Article ID 201057, 10 pages
Research Article

Nanostructural Features of Silver Nanoparticles Powder Synthesized through Concurrent Formation of the Nanosized Particles of Both Starch and Silver

Textile Research Division, National Research Centre, Dokki, P.O. Box 12622, Giza 12522, Egypt

Received 25 June 2013; Revised 31 July 2013; Accepted 2 August 2013

Academic Editor: Xiao Wei Sun

Copyright © 2013 A. Hebeish et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Green innovative strategy was developed to accomplish silver nanoparticles formation of starch-silver nanoparticles (St-AgNPs) in the powder form. Thus, St-AgNPs were synthesized through concurrent formation of the nanosized particles of both starch and silver. The alkali dissolved starch acts as reducing agent for silver ions and as stabilizing agent for the formed AgNPs. The chemical reduction process occurred in water bath under high-speed homogenizer. After completion of the reaction, the colloidal solution of AgNPs coated with alkali dissolved starch was cooled and precipitated using ethanol. The powder precipitate was collected by centrifugation, then washed, and dried; St-AgNPs powder was characterized using state-of-the-art facilities including UV-vis spectroscopy, Transmission Electron Microscopy (TEM), particle size analyzer (PS), Polydispersity index (PdI), Zeta potential (ZP), XRD, FT-IR, EDX, and TGA. TEM and XRD indicate that the average size of pure AgNPs does not exceed 20 nm with spherical shape and high concentration of AgNPs (30000 ppm). The results obtained from TGA indicates that the higher thermal stability of starch coated AgNPS than that of starch nanoparticles alone. In addition to the data obtained from EDX which reveals the presence of AgNPs and the data obtained from particle size analyzer and zeta potential determination indicate that the good uniformity and the highly stability of St-AgNPs).