About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2013 (2013), Article ID 302647, 5 pages
http://dx.doi.org/10.1155/2013/302647
Research Article

Electronic Properties and Density of States of Self-Assembled GaSb/GaAs Quantum Dots

1Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
2King Abdulaziz University, Jeddah 21589, Saudi Arabia
3Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
4Electric and Computer Engineering Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Received 1 July 2013; Accepted 30 July 2013

Academic Editor: Xiao Wei Sun

Copyright © 2013 T. Nowozin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Hayne, J. Maes, S. Bersier et al., “Electron localization by self-assembled GaSb/GaAs quantum dots,” Applied Physics Letters, vol. 82, no. 24, pp. 4355–4357, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Marent, T. Nowozin, M. Geller, and D. Bimberg, “The QD-flash: a quantum dot-based memory device,” Semiconductor Science and Technology, vol. 26, no. 1, Article ID 014026, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Nowozin, A. Marent, G. Hönig et al., “Time-resolved high-temperature detection with single charge resolution of holes tunneling into many-particle quantum dot states,” Physical Review B, vol. 84, no. 7, Article ID 075309, 7 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Nowozin, L. Bonato, A. Högner et al., “800 meV localization energy in GaSb/GaAs/Al0.3Ga0.7As quantum dots,” Applied Physics Letters, vol. 102, no. 5, Article ID 052115, 4 pages, 2013. View at Publisher · View at Google Scholar
  5. T. Nowozin, D. Bimberg, K. Daqrouq, M. N. Ajour, and M. Awedh, “Materials for future quantum dot-based memories,” Journal of Nanomaterials, vol. 2013, Article ID 215613, 6 pages, 2013. View at Publisher · View at Google Scholar
  6. C. K. Sun, G. Wang, J. E. Bowers et al., “Optical investigations of the dynamic behavior of GaSb/GaAs quantum dots,” Applied Physics Letters, vol. 68, no. 11, pp. 1543–1545, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Gradkowski, N. Pavarelli, T. J. Ochalski et al., “Complex emission dynamics of type-II GaSb/GaAs quantum dots,” Applied Physics Letters, vol. 95, no. 6, Article ID 061102, 3 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. R. B. Laghumavarapu, A. Moscho, A. Khoshakhlagh, M. El-Emawy, L. F. Lester, and D. L. Huffaker, “GaSbGaAs type II quantum dot solar cells for enhanced infrared spectral response,” Applied Physics Letters, vol. 90, no. 17, Article ID 173125, 3 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. B. M. Kinder and E. M. Goldys, “Microstructural evolution of GaSb self-assembled islands grown by metalorganic chemical vapor deposition,” Applied Physics Letters, vol. 73, no. 9, article 1233, 3 pages, 1998. View at Publisher · View at Google Scholar
  10. L. Müller-Kirsch, R. Heitz, U. W. Pohl et al., “Temporal evolution of GaSb/GaAs quantum dot formation,” Applied Physics Letters, vol. 79, no. 7, article 1027, 3 pages, 2001. View at Publisher · View at Google Scholar
  11. C. C. Tseng, S. C. Mai, W. H. Lin et al., “Influence of as on the morphologies and optical characteristics of GaSb/GaAs quantum dots,” IEEE Journal of Quantum Electronics, vol. 47, no. 3, pp. 335–339, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Y. Lin, C. C. Tseng, W. H. Lin et al., “Room-temperature operation type-II GaSb/GaAs quantum-dot infrared light-emitting diode,” Applied Physics Letters, vol. 96, no. 12, Article ID 123503, 3 pages, 2010. View at Publisher · View at Google Scholar
  13. D. V. Lang, “Deep-level transient spectroscopy: a new method to characterize traps in semiconductors,” Journal of Applied Physics, vol. 45, no. 7, article 3023, 10 pages, 1974. View at Publisher · View at Google Scholar
  14. P. Blood and J. W. Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States, Academic Press, London, UK, 1992.
  15. C. M. A. Kapteyn, M. Lion, R. Heitz et al., “Hole and electron emission from InAs quantum dots,” Applied Physics Letters, vol. 76, no. 12, pp. 1573–1575, 2000. View at Scopus
  16. J. Bourgoin and M. Lannoo, Point Defects in Semiconductors II—Experimental Aspects, vol. 35 of Springer Series in Solid-State Sciences, Springer, Berlin, Germany, 1983.
  17. G. Vincent, A. Chantre, and D. Bois, “Electric field effect on the thermal emission of traps in semiconductor junctions,” Journal of Applied Physics, vol. 50, no. 8, pp. 5484–5487, 1979. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Nowozin, A. Marent, M. Geller, D. Bimberg, N. Akçay, and N. Öncan, “Temperature and electric field dependence of the carrier emission processes in a quantum dot-based memory structure,” Applied Physics Letters, vol. 94, no. 4, Article ID 042108, 3 pages, 2009. View at Publisher · View at Google Scholar
  19. M. Geller, C. Kapteyn, L. Müller-Kirsch, R. Heitz, and D. Bimberg, “450 meV hole localization in GaSb/GaAs quantum dots,” Applied Physics Letters, vol. 82, no. 16, pp. 2706–2708, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Marent, M. Geller, A. Schliwa et al., “106 years extrapolated hole storage time in GaSb/AlAs quantum dots,” Applied Physics Letters, vol. 91, no. 24, Article ID 242109, 3 pages, 2007. View at Publisher · View at Google Scholar
  21. T. Nowozin, A. Marent, L. Bonato et al., “Linking structural and electronic properties of high-purity self-assembled GaSb/GaAs quantum dots,” Physical Review B, vol. 86, no. 3, Article ID 035305, 6 pages, 2012. View at Publisher · View at Google Scholar
  22. J. Hwang, A. J. Martin, J. M. Millunchick, and J. D. Phillips, “Thermal emission in type-II GaSb/GaAs quantum dots and prospects for intermediate band solar energy conversion,” Journal of Applied Physics, vol. 111, no. 7, Article ID 074514, 5 pages, 2012. View at Publisher · View at Google Scholar