About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2013 (2013), Article ID 367270, 6 pages
http://dx.doi.org/10.1155/2013/367270
Research Article

Superconductivity in an Inhomogeneous Bundle of Metallic and Semiconducting Nanotubes

1Physics Department, New York City College of Technology, The City University of New York, Brooklyn, NY 11201, USA
2UTD-NanoTech Institute, The University of Texas at Dallas, Richardson, TX 75083-0688, USA

Received 2 July 2013; Revised 6 September 2013; Accepted 6 September 2013

Academic Editor: Bobby G. Sumpter

Copyright © 2013 Ilya Grigorenko and Anvar Zakhidov. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. K. Tang, L. Zhang, N. Wang et al., “Superconductivity in 4 angstrom single-walled carbon nanotubes,” Science, vol. 292, no. 5526, pp. 2462–2465, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. G. V. Pai, E. Shimshoni, and N. Andrei, “Resistivity of inhomogeneous superconducting wires,” Physical Review B, vol. 77, no. 10, Article ID 104528, 2008.
  3. D. S. Golubev and A. D. Zaikin, “Thermally activated phase slips in superconducting nanowires,” Physical Review B, vol. 78, no. 14, Article ID 144502, 2008.
  4. M. Kociak, A. Y. Kasumov, S. Guéron et al., “Superconductivity in ropes of single-walled carbon nanotubes,” Physical Review Letters, vol. 86, no. 11, pp. 2416–2419, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. D. C. Ralph, C. T. Black, and M. Tinkham, “Spectroscopic measurements of discrete electronic states in single metal particles,” Physical Review Letters, vol. 74, no. 16, pp. 3241–3244, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Murata, J. Haruyama, J. Reppert et al., “Superconductivity in thin films of boron-doped carbon nanotubes,” Physical Review Letters, vol. 101, no. 2, Article ID 027002, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Kataura, Y. Kumazawa, Y. Maniwa, et al., “Optical properties of single-wall carbon nanotubes,” Synthetic Metals, vol. 103, no. 1–3, pp. 2555–2558, 1999.
  8. S. Guéron, H. Pothier, N. O. Birge, D. Esteve, and M. H. Devoret, “Superconducting proximity effect probed on a mesoscopic length scale,” Physical Review Letters, vol. 77, no. 14, pp. 3025–3028, 1996. View at Scopus
  9. J. E. Han and V. H. Crespi, “Discrete transverse superconducting modes in nanocylinders,” Physical Review B, vol. 69, no. 21, Article ID 214526, pp. 1–214526, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. A. A. Shanenko, M. D. Croitoru, and F. M. Peeters, “Nanoscale superconductivity: nanowires and nanofilms,” Physica C, vol. 468, no. 7–10, pp. 593–598, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Ma and P. A. Lee, “Localized superconductors,” Physical Review B, vol. 32, no. 9, pp. 5658–5667, 1985.
  12. P. Kumar and P. Wole, “Two-component order-parameter model for pure and thorium-doped superconducting UBe13,” Physical Review Letters, vol. 59, no. 17, pp. 1954–1957, 1987.
  13. H. Ikeda, Y. N. Isikawa, and K. Yamadai, “Possibility of f-wave spin-triplet superconductivity in the CoO2 superconductor: a case study on a 2D triangular lattice in the repulsive Hubbard model,” Journal of the Physical Society of Japan, vol. 73, pp. 17–20, 2004.
  14. M. F. Sykes and J. W. Essam, “Exact critical percolation probabilities for site and bond problems in two dimensions,” Journal of Mathematical Physics, vol. 5, no. 8, pp. 1117–1127, 1964. View at Scopus
  15. K. Yoshino, X. H. Yin, S. Morita, and A. A. Zakhidov, “Difference in doping effects of C60 and C70 in poly(3-hexylthiophene),” Japanese Journal of Applied Physics, vol. 32, no. 1, pp. L140–L143, 1993. View at Scopus
  16. A. Zharov, A. Lopatin, A. E. Koshelev, and V. M. Vinokur, “Microscopic theory of thermal phase slips in clean narrow superconducting wires,” Physical Review Letters, vol. 98, no. 19, Article ID 197005, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. D. S. Golubev and A. D. Zaikin, “Quantum tunneling of the order parameter in superconducting nanowires,” Physical Review B, vol. 64, Article ID 014504, 2001.
  18. A. Bezryadin, “Quantum suppression of superconductivity in nanowires,” Journal of Physics, vol. 20, no. 4, Article ID 043202, 2008.
  19. A. V. Semenov, P. A. Krutitskii, and I. A. Devyatov, “Microscopic theory of phase slip in a narrow durty superconducting strip,” JETP Letters, vol. 92, no. 11, pp. 762–766, 2010. View at Publisher · View at Google Scholar · View at Scopus