About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2013 (2013), Article ID 578684, 9 pages
http://dx.doi.org/10.1155/2013/578684
Research Article

Synthesis by Microwaves of Bimetallic Nano-Rhodium-Palladium

1Laboratorio Nacional de Nanotecnología, Centro de Investigación en Materiales Avanzados, S.C., Avenida Miguel de Cervantes 120, 31109 Chihuahua, CHIH, Mexico
2Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, 04510 México, DF, Mexico
3Facultad de Ciencias, Ciudad Universitaria, Universidad 3000, Circuito Exterior S/N, 04510 México, DF, Mexico

Received 29 May 2013; Revised 31 August 2013; Accepted 12 September 2013

Academic Editor: Jorge Seminario

Copyright © 2013 M. Ugalde et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Ferrando, J. Jellinek, and R. L. Johnston, “Nanoalloys: from theory to applications of alloy clusters and nanoparticles,” Chemical Reviews, vol. 108, no. 3, pp. 845–910, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Ragheb and L. A. Geddes, “Electrical properties of metallic electrodes,” Medical and Biological Engineering and Computing, vol. 28, no. 2, pp. 182–186, 1990. View at Scopus
  3. Q. Yuan and X. Wang, “Aqueous-based route toward noble metal nanocrystals: morphology-controlled synthesis and their applications,” Nanoscale, vol. 2, no. 11, pp. 2328–2335, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. H.-C. Kim, S.-M. Park, W. D. Hinsberg, and I. R. Division, “Block copolymer based nanostructures: materials, processes, and applications to electronics,” Chemical Reviews, vol. 110, no. 1, pp. 146–177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. M.-C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chemical Reviews, vol. 104, no. 1, pp. 293–346, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chemical Reviews, vol. 110, no. 1, pp. 389–458, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. N. F. Mott and H. Jones, Theory of the Properties of Metals and Alloys, Oxford University Press, London, UK, 1936.
  8. R. Coles, “Lattice spacings in Ni-Cu and Pd-Ag alloys,” Journal of the Institute of Metals, vol. 84, p. 346, 1956.
  9. A. Maeland and T. B. Flanagan, “Lattice spacings of gold-palladium alloys,” Canadian Journal of Physics, vol. 42, no. 11, pp. 2364–2366, 1964.
  10. T. B. Flanagan, B. Baranowski, and S. Majchrzak, “Remarkable interstitial hydrogen contents observed in rhodium-palladium alloys at high pressures,” Journal of Physical Chemistry, vol. 74, no. 24, pp. 4299–4300, 1970. View at Scopus
  11. B. Baranowski, S. Majchrzak, and T. B. Flanagari, “Diffusion of hydrogen in rhodium-palladium alloys,” The Journal of Physical Chemistry, vol. 77, no. 23, pp. 2804–2807, 1973. View at Scopus
  12. B. Lim, Y. Xiong, Y. Xia et al., Journal of Materials Research, vol. 3, p. 1367, 1988, Angewandte Chemie International Edition, vol. 46, p.9279, 2007. View at Publisher · View at Google Scholar
  13. B. Lim, M. Jiang, J. Tao, P. H. C. Camargo, Y. Zhu, and Y. Xia, “Shape-controlled synthesis of Pd nanocrystals in aqueous solutions,” Advanced Functional Materials, vol. 19, no. 2, pp. 189–200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Lim, H. Kobayashi, P. H. C. Camargo, L. F. Allard, J. Liu, and Y. Xia, “New insights into the growth mechanism and surface structure of palladium nanocrystals,” Nano Research, vol. 3, no. 3, pp. 180–188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. F.-R. Fan, D.-Y. Liu, Y.-F. Wu et al., “Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes,” Journal of the American Chemical Society, vol. 130, no. 22, pp. 6949–6951, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Lim, H. Kobayashi, P. H. C. Camargo, L. F. Allard, J. Liu, and Y. Xia, “New insights into the growth mechanism and surface structure of palladium nanocrystals,” Nano Research, vol. 3, no. 3, pp. 180–188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Rassoul, F. Gaillard, E. Garbowski, and M. Primet, “Synthesis and characterisation of bimetallic Pd-Rh/alumina combustion catalysts,” Journal of Catalysis, vol. 203, no. 1, pp. 232–241, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Osseo-Asare and F. J. Arriagada, “Synthesis of nanosize particles in reverse microemulsions,” Ceramic Transactions, vol. 12, pp. 3–16, 1990.
  19. M. P. Pileni, “Reverse micelles as microreactors,” Journal of Physical Chemistry, vol. 97, no. 27, pp. 6961–6973, 1993. View at Scopus
  20. I. P. Beletskaya, A. N. Kashin, A. E. Litvinov, V. S. Tyurin, P. M. Valetsky, and G. Van Koten, “Palladium colloid stabilized by block copolymer micelles as an efficient catalyst for reactions of C-C and C-heteroatom bond formation,” Organometallics, vol. 25, no. 1, pp. 154–158, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. R. W. Siegel, S. Ramasamy, H. Hahn, Z. Li, T. Lu, and R. Gronsky, “Synthesis, characterization, and properties of nanophase TiO2,” Journal of Materials Research, vol. 3, no. 6, pp. 1367–1372, 1988. View at Scopus
  22. D.-H. Kim and J. Kim, “Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties,” Electrochemical and Solid-State Letters, vol. 9, no. 9, pp. A439–A442, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Uyeda, “The morphology of fine metal crystallites,” Journal of Crystal Growth, vol. 24-25, pp. 69–75, 1974. View at Scopus
  24. F. Robert, G. Oehme, I. Grassert, and D. Sinou, “Influence of amphiphile concentration on the enantioselectivity in the rhodium-catalyzed reduction of unsaturated substrates in water,” Journal of Molecular Catalysis A, vol. 156, no. 1-2, pp. 127–132, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Mizuno, Y. Matsumura, T. Nakajima, and S. Mishima, “Effect of support on catalytic properties of Rh catalysts for steam reforming of 2-propanol,” International Journal of Hydrogen Energy, vol. 28, no. 12, pp. 1393–1399, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Gniewek, A. M. Trzeciak, J. J. Ziółkowski, L. Kȩpiński, J. Wrzyszcz, and W. Tylus, “Pd-PVP colloid as catalyst for Heck and carbonylation reactions: TEM and XPS studies,” Journal of Catalysis, vol. 229, no. 2, pp. 332–343, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Narayanan and M. A. El-Sayed, “Effect of colloidal catalysis on the nanoparticle size distribution: dendrimer-Pd vs PVP-Pd nanoparticles catalyzing the Suzuki coupling reaction,” Journal of Physical Chemistry B, vol. 108, no. 25, pp. 8572–8580, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. V. V. Shumyantseva, S. Carrara, V. Bavastrello et al., “Direct electron transfer between cytochrome P450scc and gold nanoparticles on screen-printed rhodium-graphite electrodes,” Biosensors and Bioelectronics, vol. 21, no. 1, pp. 217–222, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. I. Willner, R. Baron, and B. Willner, “Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics,” Biosensors and Bioelectronics, vol. 22, no. 9-10, pp. 1841–1852, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. J. M. D. Zapiter, B. M. Tissue, and K. J. Brewer, “Ruthenium and rhodium complexes anchored to europium oxide nanoparticles,” Inorganic Chemistry Communications, vol. 11, no. 1, pp. 51–56, 2008.
  31. H. S. Nalwa, Handbook of Nanostructured Materials and Nanotechnology, vol. 1, Academic Press, San Diego, Calif, USA, 2000.
  32. M. Harada, D. Abe, and Y. Kimura, “Synthesis of colloidal dispersions of rhodium nanoparticles under high temperatures and high pressures,” Journal of Colloid and Interface Science, vol. 292, no. 1, pp. 113–121, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Jimenez-Mier, G. Herrera, E. Chavira, L. Baños, J. Guzmán, and C. Flores, “Synthesis and structural characterization of YVO3 prepared by sol-gel acrylamide polymerization and solid state reaction methods,” Journal of Sol-Gel Science and Technology, vol. 46, no. 1, pp. 1–10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. X.-D. Mu, J.-Q. Meng, Z.-C. Li, and Y. Kou, “Rhodium nanoparticles stabilized by ionic copolymers in ionic liquids: long lifetime nanocluster catalysts for benzene hydrogenation,” Journal of the American Chemical Society, vol. 127, no. 27, pp. 9694–9695, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Ashida, K. Miura, T. Nomoto et al., “Synthesis and characterization of Rh(PVP) nanoparticles studied by XPS and NEXAFS,” Surface Science, vol. 601, no. 18, pp. 3898–3901, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Huang, J. Chen, H. Chen et al., “Enantioselective hydrogenation of ethyl pyruvate catalyzed by PVP-stabilized rhodium nanoclusters,” Journal of Molecular Catalysis A, vol. 170, no. 1-2, pp. 143–146, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. J.-L. Pellegatta, C. Blandy, V. Collière et al., “Catalytic investigation of rhodium nanoparticles in hydrogenation of benzene and phenylacetylene,” Journal of Molecular Catalysis A, vol. 178, no. 1-2, pp. 55–61, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Morneta, S. Vasseura, F. Grassteb et al., “Magnetic nanoparticle design for medical applications,” Progress in Solid State Chemistry, vol. 34, pp. 237–247, 2006.
  39. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, vol. 271, no. 5251, pp. 933–937, 1996. View at Scopus
  40. U. Kreibig and M. Vollmer, Optical Properties of Small Metal Clusters, Springer, Berlin, Germany, 1995.
  41. B. Fegley Jr., P. White, and H. K. Bowen, “Processing and characterization of ZrO2 and Y-Doped ZrO2 powders,” American Ceramic Society Bulletin, vol. 64, no. 8, pp. 1115–1120, 1985. View at Scopus
  42. M. Ugalde, E. Chavira, M. T. Ochoa-Lara, and C. Quintanar, “New synthesis method to obtain Pd nano-crystals,” Journal of Nano Research, vol. 14, pp. 93–103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Sin and P. Odier, “Gelation by Acrylamide, a quasi-universal medium for the synthesis of fine oxide powders for electroceramic applications,” Advanced Materials, vol. 12, no. 9, pp. 649–652, 2000.
  44. H. Wang, L. Gao, W. Li, and Q. Li, “Preparation of nanoscale α-Al2O3 powder by the polyacrylamide gel method,” Nanostructured Materials, vol. 11, no. 8, pp. 1263–1267, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Kobayashi, B. Lim, J. Wang et al., “Seed-mediated synthesis of Pd-Rh bimetallic nanodendrites,” Chemical Physics Letters, vol. 494, no. 4–6, pp. 249–254, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Kishore, J. A. Nelson, J. H. Adair, and P. C. Eklund, “Hydrogen storage in spherical and platelet palladium nanoparticles,” Journal of Alloys and Compounds, vol. 389, no. 1-2, pp. 234–242, 2005. View at Publisher · View at Google Scholar · View at Scopus