About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2013 (2013), Article ID 634726, 6 pages
http://dx.doi.org/10.1155/2013/634726
Research Article

Optimizing the Processing Conditions for the Reinforcement of Epoxy Resin by Multiwalled Carbon Nanotubes

Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India

Received 31 May 2013; Accepted 6 July 2013

Academic Editor: Guifu Zou

Copyright © 2013 S. Arun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. H. Gojny, M. H. G. Wichmann, B. Fiedler, and K. Schulte, “Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—a comparative study,” Composites Science and Technology, vol. 65, no. 15-16, pp. 2300–2313, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. M.-F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties,” Physical Review Letters, vol. 84, no. 24, pp. 5552–5555, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Kim, Y.-B. Park, O. I. Okoli, and C. Zhang, “Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites,” Composites Science and Technology, vol. 69, no. 3-4, pp. 335–342, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. O. Starkova, S. T. Buschhorn, E. Mannov, K. Schulte, and A. Aniskevich, “Creep and recovery of epoxy/MWCNT nanocomposites,” Composites A, vol. 43, pp. 1212–1218, 2012. View at Publisher · View at Google Scholar
  5. H. Mahfuz, S. Zainuddin, M. R. Parker, T. Al-Saadi, V. K. Rangari, and S. Jeelani, “Reinforcement of SC-15 epoxy with CNT/CNF under high magnetic field: an investigation of mechanical and thermal response,” Journal of Materials Science, vol. 44, no. 4, pp. 1113–1120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. L. He and S. C. Tjong, “Carbon nanotube/epoxy resin composite: correlation between state of nanotube dispersion and Zener tunneling parameters,” Synthetic Metals, vol. 162, pp. 2277–2281, 2012.
  7. P.-C. Ma, S.-Y. Mo, B.-Z. Tang, and J.-K. Kim, “Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites,” Carbon, vol. 48, no. 6, pp. 1824–1834, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. N. A. Buang, F. Fadil, Z. A. Majid, and S. Shahir, “Characteristic of mild acid functionalized multiwalled carbon nanotubes towards high dispersion with low structural defects,” Digest Journal of Nanomaterials and Biostructures, vol. 7, no. 1, pp. 33–39, 2012. View at Scopus
  9. M. Theodore, M. Hosur, J. Thomas, and S. Jeelani, “Influence of functionalization on properties of MWCNT-epoxy nanocomposites,” Materials Science and Engineering A, vol. 528, no. 3, pp. 1192–1200, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Yu, Z. H. Zhang, and S. Y. He, “Fracture toughness and fatigue life of MWCNT/epoxy composites,” Materials Science and Engineering A, vol. 494, no. 1-2, pp. 380–384, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. M. Rahman, S. Zainuddin, M. V. Hosur et al., “Improvements in mechanical and thermo-mechanical properties of e-glass/epoxy composites using amino functionalized MWCNTs,” Composite Structures, vol. 94, pp. 2397–2406, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Cui, F. Du, J. Zhao et al., “Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes,” Carbon, vol. 49, no. 2, pp. 495–500, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. S. K. Pillai and S. S. Ray, “Epoxy-based carbon nanotubes reinforced composites in advances,” in Nanocomposites—Synthesis, Characterization and Industrial Applications, B. Reddy, Ed., pp. 727–792, 2011.
  14. J. G. Park, Q. Cheng, J. Lu et al., “Thermal conductivity of MWCNT/epoxy composites: the effects of length, alignment and functionalization,” Carbon, vol. 50, no. 6, pp. 2083–2090, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Esumi, M. Ishigami, A. Nakajima, K. Sawada, and H. Honda, “Chemical treatment of carbon nanotubes,” Carbon, vol. 34, no. 2, pp. 279–281, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. M. A. M. Motchelaho, H. Xiong, M. Moyo, L. L. Jewell, and N. J. Coville, “Effect of acid treatment on the surface of multiwalled carbon nanotubes prepared from Fe-Co supported on CaCO3: correlation with Fischer-Tropsch catalyst activity,” Journal of Molecular Catalysis A: Chemical, vol. 335, no. 1-2, pp. 189–198, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. ASTM D 695-10., “Standard Test Method for Compressive Properties of Rigid Plastics,” 2010.
  18. F. H. Gojny and K. Schulte, “Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites,” Composites Science and Technology, vol. 64, no. 15, pp. 2303–2308, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Guadagno, L. Vertuccio, A. Sorrentino et al., “Mechanical and barrier properties of epoxy resin filled with multi-walled carbon nanotubes,” Carbon, vol. 47, no. 10, pp. 2419–2430, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Venkata Ramana, B. Padya, R. Naresh Kumar, K. P. V. Prabhakar, and P. K. Jain, “Mechanical properties of multi-walled carbon nanotubes reinforced polymer nanocomposites,” Indian Journal of Engineering and Materials Sciences, vol. 17, no. 5, pp. 331–337, 2010. View at Scopus