About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2013 (2013), Article ID 641581, 16 pages
http://dx.doi.org/10.1155/2013/641581
Research Article

Some Fundamental Aspects of Mechanics of Nanocomposite Materials and Structural Members

S. P. Timoshenko Institute of Mechanics, Nesterov Street 3, 03680 Kiev, Ukraine

Received 24 June 2013; Accepted 6 September 2013

Academic Editor: Ping Xu

Copyright © 2013 Alexander N. Guz and Jeremiah J. Rushchitsky. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. N. Guz, J. J. Rushchitsky, and I. A. Guz, Introduction to Mechanics of Nanocomposites, Akademperiodika, Kiev, Ukraine, 2010 (Russian).
  2. A. N. Guz, A. A. Rodger, and I. A. Guz, “Developing a compressive failure theory for nanocomposites,” International Applied Mechanics, vol. 41, no. 3, pp. 233–255, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. I. A. Guz, J. J. Rushchitsky, and A. N. Guz, “Mechanical models in nanomaterials,” in Handbook of Nanophysics. Principles and Methods, K. D. Sattler, Ed., vol. 1, chapter 24, pp. 24.1–24.18, Taylor and Francis Publisher (CRC Press), Boca Raton, Fla, USA, 2010.
  4. A. N. Guz and Y. Y. Rushchitskii, “Nanomaterials: on the mechanics of nanomaterials,” International Applied Mechanics, vol. 39, no. 11, pp. 1271–1293, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. I. A. Guz, A. A. Rodger, A. N. Guz, and J. J. Rushchitsky, “Developing the mechanical models for nanomaterials,” Composites A, vol. 38, no. 4, pp. 1234–1250, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Truesdell, A First Course in Rational Continuum Mechanics, The John Hopkins University, Baltimore, Md, USA, 1972.
  7. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press, Oxford, UK, 2007.
  8. L. I. Slepyan, Mechanics of Cracks, Sudostroenie, Leningrad, Russia, 1990 (Russian).
  9. V. T. Golovchan, Ed., Statics of Materials, vol. 1 of Mechanics of Composites, Naukova Dumka, Kiev, Ukraine, 1993 (Russian).
  10. N. A. Shul’ga, Ed., Dynamics and Stability of Materials, vol. 2 of Mechanics of Composites, Naukova Dumka, Kiev, Ukraine, 1993 (Russian).
  11. L. P. Khoroshun, Ed., Statistical Mechanics and Effective Properties of Materials, vol. 3 of Mechanics of Composites, Naukova Dumka, Kiev, Ukraine, 1993 (Russian).
  12. A. N. Guz and S. D. Akbarov, Eds., Mechanics of Materials with Curved Structures, vol. 4 of Mechanics of Composites, Naukova Dumka, Kiev, Ukraine, 1995 (Russian).
  13. A. A. Kaminskii, Ed., Fracture Mechanics, vol. 5 of Mechanics of Composites, Naukova Dumka, Kiev, Ukraine, 1996 (Russian).
  14. N. A. Shul’ga and V. T. Tomashevsk, Eds., Process-Induced Stresses and Strains in Materials, vol. 6 of Mechanics of Composites, Naukova Dumka, Kiev, Ukraine, 1997 (Russian).
  15. A. N. Guz, A. S. Kosmodamianskii, and V. P. Shevchenko, Eds., Stress Concentration, vol. 7 of Mechanics of Composites, Naukova Dumka, Kiev, Ukraine, 1998 (Russian).
  16. Ya. M. Grigorenko, Ed., Statics of Structural Members, vol. 8 of Mechanics of Composites, Naukova Dumka, Kiev, Ukraine, 1999 (Russian).
  17. V. D. Kubenko, Ed., Dynamics of Structural Members, vol. 9 of Mechanics of Composites, Naukova Dumka, Kiev, Ukraine, 1999 (Russian).
  18. I. Yu. Babich, Ed., Stability of Structural Members, vol. 10 of Mechanics of Composites, Naukova Dumka, Kiev, Ukraine, 2001 (Russian).
  19. Ya. M. Grigorenko and Yu. N. Shevchenko, Eds., Numerical Methods, vol. 11 of Mechanics of Composites, Naukova Dumka, Kiev, Ukraine, 2002 (Russian).
  20. A. N. Guz and L. P. Khoroshun, Eds., Applied Investigations, vol. 12 of Mechanics of Composites, Naukova Dumka, Kiev, Ukraine, 2003 (Russian).
  21. A. N. Guz, “Three-dimensional theory of stability of a carbon nanotube in a matrix,” International Applied Mechanics, vol. 42, no. 1, pp. 19–31, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. I. A. Guz, A. A. Rodger, A. N. Guz, and J. J. Rushchitsky, “Predicting the properties of micro- and nanocomposites: from the microwhiskers to the bristled nano-centipedes,” Philosophical Transactions of the Royal Society A, vol. 366, no. 1871, pp. 1827–1833, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. A. G. Metcalfe, Ed., Interfaces in Metal Matrix Composites, vol. 1 of Composite Materials, Academic Press, New York, NY, USA, 1974.
  24. G. P. Sendeckyi, Ed., Mechanics of Composite Matreials, vol. 2 of Composite Materials, Academic Press, New York, NY, USA, 1974.
  25. B. Noton, Ed., Application of Composite Materials in Technics, vol. 3 of Composite Materials, Academic Press, New York, NY, USA, 1974.
  26. B. Krider, Ed., Composite Materials with Metallic Matrix, vol. 4 of Composite Materials, Academic Press, New York, NY, USA, 1974.
  27. L. J. Broutman, Ed., Fracture and Fatigue, vol. 5 of Composite Materials, Academic Press, New York, NY, USA, 1974.
  28. E. P. Plueddemann, Ed., Interfaces in Polymer Matrix Composites, vol. 6 of Composite Materials, Academic Press, New York, NY, USA, 1974.
  29. C. C. Chamis, Ed., Structural Design and Analysis—Part 1, vol. 7 of Composite Materials, Academic Press, New York, NY, USA, 1975.
  30. C. C. Chamis, Ed., Structural Design and Analysis—Part 2, vol. 7 of Composite Materials, Academic Press, New York, NY, USA, 1975.
  31. T.-W. Chou, Ed., Fiber Reinforcements and General Theory of Composites, vol. 1 of Comprehensive Composite Material, Elsevier, London, UK, 2006.
  32. R. Talreja and J. A. Mänson, Eds., Polymer Matrix Composites, vol. 2 of Comprehensive Composite Material, Elsevier, London, UK, 2006.
  33. T. W. Clyne, Ed., Metal Matrix Composites, vol. 3 of Comprehensive Composite Material, Elsevier, London, UK, 2006.
  34. R. Warren, Ed., Carbon/Carbon, Cement and Ceramic Composites, vol. 4 of Comprehensive Composite Material, Elsevier, London, UK, 2006.
  35. L. Carlsson, R. L. Crane, and K. Uchino, Eds., Test Methods, Nondestructive Evaluation, and Smart Materials, vol. 5 of Comprehensive Composite Material, Elsevier, London, UK, 2006.
  36. W. G. Bader, K. Kedsvard, and Y. Sawada, Eds., Design and Applications, vol. 6 of Comprehensive Composite Material, Elsevier, London, UK, 2006.
  37. I. Milne, R. O. Ritchie, and B. Karihaloo, Eds., Structural Integrity Assessment—Examples and Case Studies, vol. 1 of Comprehensive Structural Integrity, Elsevier, London, UK, 2006.
  38. B. Karihaloo and W. G. Knauss, Eds., Fundamental Theories and Mechanisms of Failure, vol. 2 of Comprehensive Structural Integrity, Elsevier, London, UK, 2006.
  39. R. de Borst and H. A. Mang, Eds., Numerical and Computational Methods, vol. 3 of Comprehensive Structural Integrity, Elsevier, London, UK, 2006.
  40. R. O. Ritchie and Y. Murakami, Eds., Cyclic Loading and Fatigue, vol. 4 of Comprehensive Structural Integrity, Elsevier, London, UK, 2006.
  41. A. Saxena, Ed., Creep and High-Temperature Failure, vol. 5 of Comprehensive Structural Integrity, Elsevier, London, UK, 2006.
  42. J. Petit and P. Scott, Eds., Environmentally Assisted Fracture, vol. 6 of Comprehensive Structural Integrity, Elsevier, London, UK, 2006.
  43. R. A. Ainsworth and K.-H. Schwalbe, Eds., Practical Failure Assessment Methods, vol. 7 of Comprehensive Structural Integrity, Elsevier, London, UK, 2006.
  44. W. Gerberich and W. Yang, Eds., Interfacial and Nanoscale Failure, vol. 8 of Comprehensive Structural Integrity, Elsevier, London, UK, 2006.
  45. Y.-W. Mai and S.-H. Teoh, Eds., Bioengineering, vol. 9 of Comprehensive Structural Integrity, Elsevier, London, UK, 2006.
  46. Indexes, vol. 10 of Comprehensive Structural Integrity, Elsevier, London, UK, 2006.
  47. L. P. Khoroshun, Ed., Mechanics of Materials, vol. 1 of Mechanics of Composite Materials and Structural Members, Naukova Dumka, Kiev, Ukraine, 1982 (Russian).
  48. Ya. M. Grigorenko, Ed., Mechanics of Structural Members, vol. 2 of Mechanics of Composite Materials and Structural Members, Naukova Dumka, Kiev, Ukraine, 1982 (Russian).
  49. Applied Investigations, vol. 3 of Mechanics of Composite Materials and Structural Members, Naukova Dumka, Kiev, Ukraine, 1983 (Russian).
  50. C. Cattani and J. J. Rushchitsky, Wavelet and Wave Analysis as Applied to Materials with Micro or Nanostructures, World Scientific Publishing, Singapore, 2007.
  51. Y. Y. Rushchitskii, “Extension of the microstructural theory of two-phase mixtures to composite materials,” International Applied Mechanics, vol. 36, no. 5, pp. 586–614, 2000. View at Scopus
  52. J. J. Rushchitsky and S. I. Tsurpal, Waves in Materials with Microstructure, SP Timoshenko Institute of Mechanics, Kiev, Ukraine, 1998 (Russian).
  53. A. Bedford, G. S. Drumheller, and H. J. Sutherland, “On modeling the dynamics of composite materials,” in Mechanics Today, S. Nemat-Nasser, Ed., vol. 3, pp. 1–54, Pergamon Press, New York, NY, USA, 1976.
  54. H. S. Katz and J. V. Milewski, Eds., Handbook of Fillers and Reinforcements for Plastics, Van Nostrand Reinhold Company, New York, NY, USA, 1978.
  55. M. A. Biot, “Surface instability in finite anisotropic elasticity under initial stress,” Proceedings of the Royal Society A, vol. 273, no. 1354, pp. 329–339, 1963.
  56. A. N. Guz, Fundamentals of Three-Dimensional Theory of Stability of Deforming Bodies, Vyshcha Shkola, Kiev, Ukraine, 1986 (Russian).
  57. A. N. Guz, Fundamentals of Three-Dimensional Theory of Stability of Deformable Bodies, Springer, Berlin, Germany, 1999.
  58. A. N. Guz, Ed., Fracture in Structure of Material, vol. 1 of Fundamentals of Fracture Mechanics of Composites under Compression, Litera, Kiev, Ukraine, 2008 (Russian).
  59. A. N. Guz, Ed., Related Mechanisms of Fracture, vol. 2 of Fundamentals of Fracture Mechanics of Composites under Compression, Litera, Kiev, Ukraine, 2008 (Russian).
  60. M. A. Biot, “Fundamental skin effect in anisotropic solid mechanics,” International Journal of Solids and Structures, vol. 2, no. 4, pp. 645–663, 1966. View at Scopus
  61. N. A. Shul’ga, Foundations of Mechanics of Layered Media of Periodic Structure, Naukova Dumka, Kiev, Ukraine, 1981 (Russian).
  62. A. N. Guz, J. J. Rushchitsky, and I. A. Guz, “Establishing fundamentals of the mechanics of nanocomposites,” International Applied Mechanics, vol. 43, no. 3, pp. 247–271, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. S. C. Tjong, Carbon Nanotube Reinforced Composites: Metal and Ceramic Matrices, Wiley-VCH, Weinheim, Germany, 2009.
  64. D. W. Brenner, “Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films,” Physical Review B, vol. 42, no. 15, pp. 9458–9471, 1990. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Tersoff, “Empirical interatomic potential for carbon, with applications to amorphous carbon,” Physical Review Letters, vol. 61, no. 25, pp. 2879–2882, 1988. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Tersoff, “New empirical approach for the structure and energy of covalent systems,” Physical Review B, vol. 37, no. 12, pp. 6991–7000, 1988. View at Publisher · View at Google Scholar · View at Scopus
  67. E. Hernández, C. Goze, P. Bernier, and A. Rubio, “Elastic properties of single-wall nanotubes,” Applied Physics A, vol. 68, no. 3, pp. 287–292, 1999. View at Scopus
  68. J. Ramsden, Nanotechnology, Ventus Publishing ApS, Copenhagen, Denmark, 2010.
  69. E. T. Thostenson, C. Li, and T.-W. Chou, “Nanocomposites in context,” Composites Science and Technology, vol. 65, no. 3-4, pp. 491–516, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Kelly, “Composites in context,” Composites Science and Technology, vol. 23, no. 3, pp. 171–199, 1985. View at Scopus
  71. N. Wilson, K. Kannangara, G. Smith, M. Simmons, and B. Raguse, Nanotechnology: Basic Science and Emerging Technologies, Chapman and Hall/CRC, Boca Raton, Fla, USA, 2002.
  72. V. A. Buryachenko, A. Roy, K. Lafdi, K. L. Anderson, and S. Chellapilla, “Multi-scale mechanics of nanocomposites including interface: experimental and numerical investigation,” Composites Science and Technology, vol. 65, no. 15-16, pp. 2435–2465, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. A. A. Guz, J. J. Rushchitsky, and I. A. Guz, “Comparative computer modeling of carbon-polymer composites with carbon or graphite microfibers or carbon nanotubes,” Computer Modeling in Engineering and Sciences, vol. 26, no. 3, pp. 139–156, 2008. View at Scopus
  74. A. K.-T. Lau and D. Hui, “The revolutionary creation of new advanced materials—carbon nanotube composites,” Composites B, vol. 33, no. 4, pp. 263–277, 2002. View at Publisher · View at Google Scholar · View at Scopus
  75. H. S. Nalwa, Handbook of Nanostructured Materials and Nanotechnology, vol. 3, Academic Press, San Diego, Calif, USA, 2000.
  76. D. Srivastava, C. Wei, and K. Cho, “Nanomechanics of carbon nanotubes and composites,” Applied Mechanics Reviews, vol. 56, no. 2, pp. 215–229, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. Y.-W. Mai and Z. Yu, Eds., Polymer Nanocomposites, Woodhead Publishing Limited, Cambridge, UK, 2009.