About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2013 (2013), Article ID 761031, 10 pages
http://dx.doi.org/10.1155/2013/761031
Research Article

On the Tapping Mode Measurement for Young’s Modulus of Nanocrystalline Metal Coatings

Edward E. Whitacre, Jr. College of Engineering, Mechanical Engineering, Texas Tech University, P. O. Box 41021, Lubbock, TX 79409-1021, USA

Received 7 June 2013; Revised 26 July 2013; Accepted 27 July 2013

Academic Editor: Carlos R. Cabrera

Copyright © 2013 H. S. Tanvir Ahmed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. G. Nieh and J. Wadsworth, “Hall-petch relation in nanocrystalline solids,” Scripta Metallurgica et Materiala, vol. 25, no. 4, pp. 955–958, 1991. View at Scopus
  2. C. A. Schuh, T. G. Nieh, and H. Iwasaki, “The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni,” Acta Materialia, vol. 51, no. 2, pp. 431–443, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. A. F. Jankowski, C. K. Saw, J. F. Harper, B. F. Vallier, J. L. Ferreira, and J. P. Hayes, “Nanocrystalline growth and grain-size effects in Au-Cu electrodeposits,” Thin Solid Films, vol. 494, no. 1-2, pp. 268–273, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Dao, L. Lu, R. J. Asaro, J. T. M. De Hosson, and E. Ma, “Toward a quantitative understanding of mechanical behavior of nanocrystalline metals,” Acta Materialia, vol. 55, no. 12, pp. 4041–4065, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Tayebi, T. F. Conry, and A. A. Polycarpou, “Determination of hardness from nanoscratch experiments: corrections for interfacial shear stress and elastic recovery,” Journal of Materials Research, vol. 18, no. 9, pp. 2150–2162, 2003. View at Scopus
  6. C. A. Schuh, T. G. Nieh, and T. Yamasaki, “Hall-Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel,” Scripta Materialia, vol. 46, no. 10, pp. 735–740, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. K. M. Lee, C.-D. Yeo, and A. A. Polycarpou, “Nanomechanical property and nanowear measurements for Sub-10-nm thick films in magnetic storage,” Experimental Mechanics, vol. 47, no. 1, pp. 107–121, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Chen, L. Lu, and K. Lu, “Hardness and strain rate sensitivity of nanocrystalline Cu,” Scripta Materialia, vol. 54, no. 11, pp. 1913–1918, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. L. O. Nyakiti and A. F. Jankowski, “Characterization of strain-rate sensitivity and grain boundary structure in nanocrystalline gold-copper alloys,” Metallurgical and Materials Transactions A, vol. 41, no. 4, pp. 838–847, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. F. Doerner and W. D. Nix, “A method for interpreting the data from a depth sensing indentation instrument,” Journal of Materials Research, vol. 1, no. 4, pp. 601–609, 1986. View at Publisher · View at Google Scholar
  11. W. C. Oliver and G. M. Pharr, “Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, vol. 7, no. 6, pp. 1564–1583, 1992. View at Scopus
  12. W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology,” Journal of Materials Research, vol. 19, no. 1, pp. 3–20, 2004. View at Scopus
  13. E. Z. Meyer, “Untersuchungen über Härteprüfung und Härte,” Zeitschrift des Vereines Deutscher Ingenieure, vol. 52, pp. 645–654, 1908.
  14. A. F. Jankowski, “Superhardness effect in Au/Ni multilayers,” Journal of Magnetism and Magnetic Materials, vol. 126, no. 1–3, pp. 185–191, 1993. View at Scopus
  15. J. J. Vlassak and W. D. Nix, “Measuring the elastic properties of anisotropic materials by means of indentation experiments,” Journal of the Mechanics and Physics of Solids, vol. 42, no. 8, pp. 1223–1245, 1994. View at Scopus
  16. J. G. Swadener and G. M. Pharr, “Indentation of elastically anisotropic half-spaces by cones and parabolae of revolution,” Philosophical Magazine A, vol. 81, no. 2, pp. 447–466, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Delafargue and F.-J. Ulm, “Explicit approximations of the indentation modulus of elastically orthotropic solids for conical indenters,” International Journal of Solids and Structures, vol. 41, no. 26, pp. 7351–7360, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. F. A. McClintock and A. S. Argon, “Other measures of plastic hardness,” in Mechanical Behavior of Materials, vol. 13 of Addison-Wesley Series in Metallurgy and Materials, pp. 450–458, Addison-Wesley, Reading, 1966.
  19. D. Tabor, “The hardness of solids,” Review of Physics in Technology, vol. 1, no. 3, pp. 145–179, 1970. View at Scopus
  20. M. Reinstädtler, T. Kasai, U. Rabe, B. Bhushan, and W. Arnold, “Imaging and measurement of elasticity and friction using the TRmode,” Journal of Physics D, vol. 38, no. 18, pp. R269–R282, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. D. DeVecchio and B. Bhushan, “Localized surface elasticity measurements using an atomic force microscope,” Review of Scientific Instruments, vol. 68, no. 12, pp. 4498–4505, 1997. View at Scopus
  22. R. Whiting and M. A. Angadi, “Young's modulus of thin films using a simplified vibrating reed method,” Measurement Science and Technology, vol. 1, no. 7, article 024, pp. 662–664, 1990. View at Publisher · View at Google Scholar · View at Scopus
  23. K.-D. Wantke, H. Fruhner, J. Fang, and K. Lunkenheimer, “Measurements of the surface elasticity in medium frequency range using the oscillating bubble method,” Journal of Colloid and Interface Science, vol. 208, no. 1, pp. 34–48, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. A. S. Useinov, “A nanoindentation method for measuring the Young modulus of superhard materials using a NanoScan scanning probe microscope,” Instruments and Experimental Techniques, vol. 47, no. 1, pp. 119–123, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. K. V. Gogolinskiǐ, Z. Y. Kosakovskaya, A. S. Useinov, and I. A. Chaban, “Measurement of the elastic moduli of dense layers of oriented carbon nanotubes by a scanning force microscope,” Acoustical Physics, vol. 50, no. 6, pp. 664–669, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. S. I. Lee, S. W. Howell, A. Raman, and R. Reifenberger, “Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: a comparison between theory and experiment,” Physical Review B, vol. 66, no. 11, Article ID 115409, 10 pages, 2002. View at Scopus
  27. O. Sahin and N. Erina, “High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy,” Nanotechnology, vol. 19, no. 44, Article ID 445717, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. D. W. Chun, K. S. Hwang, K. Eom et al., “Detection of the Au thin-layer in the Hz per picogram regime based on the microcantilevers,” Sensors and Actuators A, vol. 135, no. 2, pp. 857–862, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Gitis, M. Vinogradov, I. Hermann, and S. Kuiry, “Comprehensive mechanical and tribological characterization of ultra-thin films,” MRS Proceedings, vol. 1049, 2008. View at Publisher · View at Google Scholar
  30. A. F. Jankowski, “Vapor deposition and characterization of nanocrystalline nanolaminates,” Surface and Coatings Technology, vol. 203, no. 5-7, pp. 484–489, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. A. F. Jankowski, “On eliminating deposition-induced amorphization of interfaces in refractory metal multilayer systems,” Thin Solid Films, vol. 220, no. 1-2, pp. 166–171, 1992. View at Scopus
  32. A. F. Jankowski, J. P. Hayes, T. E. Felter, C. Evans, and A. J. Nelson, “Sputter deposition of silicon-oxide coatings,” Thin Solid Films, vol. 420-421, pp. 43–46, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. A. F. Jankowski, M. A. Wall, A. W. Van Buuren, T. G. Nieh, and J. Wadsworth, “From nanocrystalline to amorphous structure in beryllium-based coatings,” Acta Materialia, vol. 50, no. 19, pp. 4791–4800, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. A. F. Jankowski, C. K. Saw, C. C. Walton, J. P. Hayes, and J. Nilsen, “Boron-carbide barrier layers in scandium-silicon multilayers,” Thin Solid Films, vol. 469-470, pp. 372–376, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. A. F. Jankowski, J. P. Hayes, and C. K. Saw, “Dimensional attributes in enhanced hardness of nanocrystalline Ta-V nanolaminates,” Philosophical Magazine, vol. 87, no. 16, pp. 2323–2334, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. A. F. Jankowski and M. A. Wall, “Transmission electron microscopy of Ni/Ti neutron mirrors,” Thin Solid Films, vol. 181, no. 1-2, pp. 305–312, 1989. View at Scopus
  37. A. F. Jankowski and M. A. Wall, “Synthesis and characterization of nanophase face-centered-cubic titanium,” Nanostructured Materials, vol. 7, no. 1-2, pp. 89–94, 1996. View at Scopus
  38. H. S. T. Ahmed, Use of dynamic test methods to reveal mechanical properties of nanomaterials [Ph.D. thesis], Texas Tech University, 2010.
  39. J. F. Nye, Physical Properties of Crystals, Oxford Press, Oxford, UK, 1960.
  40. J. R. Neighbours and G. A. Alers, “Elastic constants of silver and gold,” Physical Review, vol. 111, no. 3, pp. 707–712, 1958. View at Publisher · View at Google Scholar · View at Scopus
  41. G. A. Alers, “Elastic moduli of vanadium,” Physical Review, vol. 119, no. 5, pp. 1532–1535, 1960. View at Publisher · View at Google Scholar · View at Scopus
  42. F. H. Featherston and J. R. Neighbours, “Elastic constants of tantalum, tungsten, and molybdenum,” Physical Review, vol. 130, no. 4, pp. 1324–1333, 1963. View at Publisher · View at Google Scholar · View at Scopus
  43. B. T. Bernstein, “Elastic constants of synthetic sapphire at 27°,” Journal of Applied Physics, vol. 34, no. 1, pp. 169–172, 1963. View at Publisher · View at Google Scholar · View at Scopus
  44. H. M. Trent, D. E. Stone, and L. A. Beaubien, “Elastic constants, hardness, strength, elastic limits, and diffusion coefficients of solids,” in American Institute of Physics Handbook, Section 2, pp. 49–59, McGraw Hill, New York, NY, USA, 1972.
  45. H. P. R. Frederikse, “Elastic Constants of Single Crystals,” in Handbook of Chemistry and Physics, D. Lide, Ed., section 12, pp. 33–38, CRC Press Taylor and Francis, Boca Raton, Fla, USA, 88th edition, 2008.
  46. J. Hay, Application Notes 5990-4853EN (Agilent Technology), 2009,.
  47. Y. Yamada-Takamura, E. Shimono, and T. Toshida, “Nanoindentation characterization of cBN films deposited from vapor phase,” in Proceedings of the 14th International Symposium on Plasma Chemistry (ISPC '14), M. Hrabovsky, Ed., vol. 3, pp. 1629–1634, Prague, Czech Republic.
  48. J. Y. Rho and G. M. Pharr, “Nanoindentation testing of bone,” in Mechanical Testing of Bone and the Bone-Implant Interface, Y. H. An and R. A. Draughn, Eds., chapter 17, pp. 257–269, CRC Press, New York, NY, USA, 2000.
  49. K. L. Johnson, K. Kendall, and A. D. Roberts, “Surface energy and the contact of elastic solids,” in Proceedings of the Royal Society A, vol. 324, pp. 301–313, 1971.
  50. Y.-P. Zhao, X. Shi, and W. J. Li, “Effect of work of adhesion on nanoindentation,” Reviews on Advanced Materials Science, vol. 5, no. 4, pp. 348–353, 2003. View at Scopus
  51. B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, “Effect of contact deformations on the adhesion of particles,” Journal of Colloid And Interface Science, vol. 53, no. 2, pp. 314–326, 1975. View at Scopus
  52. J. Drelich, “Adhesion forces measured between particles and substrates with nano-roughness,” Minerals and Metallurgical Processing, vol. 23, no. 4, pp. 226–232, 2006. View at Scopus
  53. M. M. McCann, Nanoindentation of gold single crystals [Ph.D. thesis], Virginia Polytechnic Institute and State University, 2004.