About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2013 (2013), Article ID 768724, 8 pages
http://dx.doi.org/10.1155/2013/768724
Research Article

Amino-Functionalized Silica Nanoparticles: In Vitro Evaluation for Targeted Delivery and Therapy of Pancreatic Cancer

Pharmaceutical Research Institute at Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY 12144, USA

Received 14 August 2012; Accepted 5 December 2012

Academic Editor: Thomas Thundat

Copyright © 2013 Abbey Y. Kardys et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. American Cancer Society, Cancer Facts & Figures 2012, pp. 19, http://www.cancer.org/Research/CancerFactsFigures/CancerFactsFigures/cancer-facts-figures-2012.
  2. R. T. Greenlee, M. B. Hill-Harmon, T. Murray, and M. Thun, “Cancer statistics, 2001,” A Cancer Journal for Clinicians, vol. 51, no. 1, pp. 15–36, 2001. View at Scopus
  3. T. P. Yeo, R. H. Hruban, S. D. Leach et al., “Pancreatic cancer,” Current Problems in Cancer, vol. 26, no. 4, pp. 176–275, 2002. View at Scopus
  4. R. H. Hruban, G. M. Petersen, M. Goggins et al., “Familial pancreatic cancer,” Annals of Oncology, vol. 10, supplement 4, pp. 69–73, 1999. View at Scopus
  5. G. M. Petersen and R. H. Hruban, “Familial pancreatic cancer: where are we in 2003?” Journal of the National Cancer Institute, vol. 95, no. 3, pp. 180–181, 2003. View at Scopus
  6. D. F. Emerich and C. G. Thanos, “Nanotechnology and medicine,” Expert Opinion on Biological Therapy, vol. 3, no. 4, pp. 655–663, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Kubik, K. Bogunia-Kubik, and M. Sugisaka, “Nanotechnology on duty in medical applications,” Current Pharmaceutical Biotechnology, vol. 6, no. 1, pp. 17–33, 2005.
  8. S. E. Leucuta, “Nanotechnology for delivery of drugs and biomedical applications,” Current Clinical Pharmacology, vol. 5, no. 4, pp. 257–280, 2010. View at Scopus
  9. D. J. Bharali and S. A. Mousa, “Emerging nanomedicines for early cancer detection and improved treatment: current perspective and future promise,” Pharmacology & Therapeutics, vol. 128, no. 2, pp. 324–335, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Ferrari, “Cancer nanotechnology: opportunities and challenges,” Nature Reviews Cancer, vol. 5, no. 3, pp. 161–171, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Nie, Y. Xing, G. J. Kim, and J. W. Simons, “Nanotechnology applications in cancer,” Annual Review of Biomedical Engineering, vol. 9, pp. 257–288, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Singhal, S. Nie, and M. D. Wang, “Nanotechnology applications in surgical oncology,” Annual Review of Medicine, vol. 61, pp. 359–373, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. G. S. Kwon, “Polymeric micelles for delivery of poorly water-soluble compounds,” Critical Reviews in Therapeutic Drug Carrier Systems, vol. 20, no. 5, pp. 357–403, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. C. M. Walko and H. McLeod, “Pharmacogenomic progress in individualized dosing of key drugs for cancer patients,” Nature Clinical Practice Oncology, vol. 6, no. 3, pp. 153–162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Brigger, C. Dubernet, and P. Couvreur, “Nanoparticles in cancer therapy and diagnosis,” Advanced Drug Delivery Reviews, vol. 54, no. 5, pp. 631–651, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Lu, M. Liong, J. I. Zink, and F. Tamanoi, “Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs,” Small, vol. 3, no. 8, pp. 1341–1346, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Y. Ohulchanskyy, I. Roy, L. N. Goswami et al., “Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer,” Nano Letters, vol. 7, no. 9, pp. 2835–2842, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Kumar, I. Roy, T. Y. Ohulchanskyy et al., “Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging,” ACS Nano, vol. 2, no. 3, pp. 449–456, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Yan, C. Teh, S. Sreejith, L. Zhu, A. Kwok, W. Fang, et al., “Functional mesoporous silica nanoparticles for photothermal-controlled drug delivery in vivo,” Angewandte Chemie, vol. 51, no. 33, pp. 8373–8377, 2012. View at Publisher · View at Google Scholar
  20. M. Gary-Bobo, Y. Mir, C. Rouxel, D. Brevet, O. Hocine, M. Maynadier, et al., “Multifunctionalized mesoporous silica nanoparticles for the in vitro treatment of retinoblastoma: drug delivery, one and two-photon photodynamic therapy,” International Journal of Pharmaceutics, vol. 432, no. 1-2, pp. 99–104, 2012. View at Publisher · View at Google Scholar
  21. I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar et al., “Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy,” Journal of the American Chemical Society, vol. 125, no. 26, pp. 7860–7865, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Sharma, N. E. Bengtsson, G. A. Walter, H. B. Sohn, G. Zhou, N. Iwakuma, et al., “Gadolinium-doped silica nanoparticles encapsulating indocyanine green for near infrared and magnetic resonance imaging,” Small, vol. 8, no. 18, pp. 2856–2868, 2012. View at Publisher · View at Google Scholar
  23. P. Wang, X. Hu, S. Cook, and H. M. Hwang, “Influence of silica-derived nano-supporters on cellobiase after immobilization,” Applied Biochemistry and Biotechnology, vol. 158, no. 1, pp. 88–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. D. J. Bharali, I. Klejbor, E. K. Stachowiak et al., “Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 32, pp. 11539–11544, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Luo and W. M. Saltzman, “Enhancement of transfection by physical concentration of DNA at the cell surface,” Nature Biotechnology, vol. 18, no. 8, pp. 893–895, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Tan, K. Wang, X. He et al., “Bionanotechnology based on silica nanoparticles,” Medicinal Research Reviews, vol. 24, no. 5, pp. 621–638, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Santra, P. Zhang, K. Wang, R. Tapec, and W. Tan, “Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers,” Analytical Chemistry, vol. 73, no. 20, pp. 4988–4993, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. L. M. Rossi, L. Shi, F. H. Quina, and Z. Rosenzweig, “Stober synthesis of monodispersed luminescent silica nanoparticles for bioanalytical assays,” Langmuir, vol. 21, no. 10, pp. 4277–4280, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Flachsbart and W. Stöber, “Preparation of radioactively labeled monodisperse silica spheres of colloidal size,” Journal of Colloid and Interface Science, vol. 30, no. 4, pp. 568–573, 1969. View at Scopus
  30. K. Stalder and W. Stober, “Haemolytic activity of suspensions of different silica modifications and inert dusts,” Nature, vol. 207, no. 999, pp. 874–875, 1965. View at Publisher · View at Google Scholar · View at Scopus
  31. D. J. Bharali, V. Pradhan, G. Elkin et al., “Novel nanoparticles for the delivery of recombinant hepatitis B vaccine,” Nanomedicine, vol. 4, no. 4, pp. 311–317, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Meng, M. Liong, T. Xia et al., “Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line,” ACS Nano, vol. 4, no. 8, pp. 4539–4550, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Michl, M. Buchholz, M. Rolke et al., “Claudin-4: a new target for pancreatic cancer treatment using Clostridium perfringens enterotoxin,” Gastroenterology, vol. 121, no. 3, pp. 678–684, 2001. View at Scopus
  34. C. A. Foss, J. J. Fox, G. Feldmann et al., “Radiolabeled anti-claudin 4 and anti-prostate stem cell antigen: initial imaging in experimental models of pancreatic cancer,” Molecular Imaging, vol. 6, no. 2, pp. 131–139, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Yamaguchi, T. Kojima, T. Ito, D. Kyuno, Y. Kimura, M. Imamura, et al., “Effects of Clostridium perfringens enterotoxin via claudin-4 on normal human pancreatic duct epithelial cells and cancer cells,” Cellular & Molecular Biology Letters, vol. 16, no. 3, pp. 385–397, 2011. View at Publisher · View at Google Scholar