About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2013 (2013), Article ID 797964, 4 pages
http://dx.doi.org/10.1155/2013/797964
Research Article

Room-Temperature Hysteresis in a Hole-Based Quantum Dot Memory Structure

1Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
2Electric and Computer Engineering Department, King-Abdul-Aziz University, Jeddah 21589, Saudi Arabia

Received 26 June 2013; Accepted 23 July 2013

Academic Editor: John A. Capobianco

Copyright © 2013 Tobias Nowozin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Waser, Nanoelectronics and Information Technology, Wiley-VCH, Berlin, Germany, 2003.
  2. L. Geppert, “The new indelible memories,” IEEE Spectrum, vol. 40, no. 3, pp. 48–54, 2003. View at Scopus
  3. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures, John Wiley & Sons, Chichester, UK, 1998.
  4. M. Geller, A. Marent, and D. Bimberg, “Speicherzelle und Verfahren zum Speichern von Daten (Memory cell and method for storing data),” International patent EP/2097904, 2006.
  5. D. Bimberg, M. Geller, A. Marent, and T. Nowozin, “Memory,” US Patent 8,331,142 B2, 2012.
  6. T. Müller, F. F. Schrey, G. Strasser, and K. Unterrainer, “Ultrafast intraband spectroscopy of electron capture and relaxation in InAs/GaAs quantum dots,” Applied Physics Letters, vol. 83, no. 17, pp. 3572–3574, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Geller, A. Marent, E. Stock et al., “Hole capture into self-organized InGaAs quantum dots,” Applied Physics Letters, vol. 89, no. 23, Article ID 232105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Geller, A. Marent, T. Nowozin, D. Bimberg, N. Aķay, and N. Öncan, “A write time of 6 ns for quantum dot-based memory structures,” Applied Physics Letters, vol. 92, no. 9, Article ID 092108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Nataraj, N. Ooike, J. Motohisa, and T. Fukui, “Fabrication of one-dimensional GaAs channel-coupled InAs quantum dot memory device by selective-area metal-organic vapor phase epitaxy,” Applied Physics Letters, vol. 87, no. 19, Article ID 193103, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Marent, T. Nowozin, J. Gelze, F. Luckert, and D. Bimberg, “Hole-based memory operation in an InAs/GaAs quantum dot heterostructure,” Applied Physics Letters, vol. 95, no. 24, Article ID 242114, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Marent, T. Nowozin, M. Geller, and D. Bimberg, “The QD-flash: a quantum dot-based memory device,” Semiconductor Science and Technology, vol. 26, no. 1, Article ID 014026, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Balocco, A. M. Song, and M. Missous, “Room-temperature operations of memory devices based on self-assembled InAs quantum dot structures,” Applied Physics Letters, vol. 85, no. 24, pp. 5911–5913, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Marent, M. Geller, A. Schliwa et al., “106 years extrapolated hole storage time in GaSbAlAs quantum dots,” Applied Physics Letters, vol. 91, no. 24, Article ID 242109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” Journal of Applied Physics, vol. 89, no. 11 I, pp. 5815–5875, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Nowozin, A. Marent, G. Hönig et al., “Time-resolved high-temperature detection with single charge resolution of holes tunneling into many-particle quantum dot states,” Physical Review B, vol. 84, no. 7, Article ID 075309, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Vincent, A. Chantre, and D. Bois, “Electric field effect on the thermal emission of traps in semiconductor junctions,” Journal of Applied Physics, vol. 50, no. 8, pp. 5484–5487, 1979. View at Publisher · View at Google Scholar · View at Scopus
  17. W. H. Chang, W. Y. Chen, T. M. Hsu, N. T. Yeh, and J. I. Chyi, “Hole emission processes in InAs/GaAs self-assembled quantum dots,” Physical Review B, vol. 66, Article ID 195337, 8 pages, 2002.
  18. T. Nowozin, A. Marent, M. Geller, D. Bimberg, N. Aķay, and N. Öncan, “Temperature and electric field dependence of the carrier emission processes in a quantum dot-based memory structure,” Applied Physics Letters, vol. 94, no. 4, Article ID 042108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Ruß, C. Meier, A. Lorke, D. Reuter, and A. D. Wieck, “Role of quantum capacitance in coupled low-dimensional electron systems,” Physical Review B, vol. 73, no. 11, Article ID 115334, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Marquardt, A. Beckel, A. Lorke, A. D. Wieck, D. Reuter, and M. Geller, “The influence of charged InAs quantum dots on the conductance of a two-dimensional electron gas: mobility vs. carrier concentration,” Applied Physics Letters, vol. 99, no. 22, Article ID 223510, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Nowozin, L. Bonato, A. Hogner et al., “800 meV localization energy in GaSb/GaAs/Al0.3Ga0.7As quantum dots,” Applied Physics Letters, vol. 102, Article ID 052115, 4 pages, 2013. View at Publisher · View at Google Scholar
  22. T. Nowozin, D. Bimberg, K. Daqrouq, M. N. Ajour, and M. Awedh, “Materials for future quantum dot-based memories,” Journal of Nanomaterials, vol. 2013, Article ID 215613, 6 pages, 2013. View at Publisher · View at Google Scholar