About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2013 (2013), Article ID 830151, 7 pages
http://dx.doi.org/10.1155/2013/830151
Research Article

Immobilization of α-Chymotrypsin on the Surface of Magnetic/Gold Core/Shell Nanoparticles

1Department of Chemical and Biological Engineering, State University of New York at Buffalo, 303 Furnas Hall, Buffalo, NY 14260-4200, New York, USA
2Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Avenue, P.O. Box 11365, Tehran, Iran

Received 23 July 2013; Accepted 10 October 2013

Academic Editor: E. Goldys

Copyright © 2013 Mahmoud Kamal Ahmadi and Manouchehr Vossoughi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Wu, P. Ou, and L. Zeng, “Biomedical applications of magnetic nanoparticles,” Nano, vol. 5, no. 5, pp. 245–270, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. S. M. Moghimi, A. C. Hunter, and J. C. Murray, “Long-circulating and target-specific nanoparticles: theory to practice,” Pharmacological Reviews, vol. 53, no. 2, pp. 283–318, 2001. View at Scopus
  3. J. M. Wilkinson, “Nanotechnology applications in medicine,” Medical Device Technology, vol. 14, no. 5, pp. 29–31, 2003. View at Scopus
  4. Y. Zhang, N. Kohler, and M. Zhang, “Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake,” Biomaterials, vol. 23, no. 7, pp. 1553–1561, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Su, X. Zhan, F. Tang, J. Yao, and J. Wu, “Magnetic nanoparticles in brain disease diagnosis and targeting drug delivery,” Current Nanoscience, vol. 7, no. 1, pp. 37–46, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M. G. Harisinghani, J. Barentsz, P. F. Hahn et al., “Noninvasive detection of clinically occult lymph-node metastases in prostate cancer,” New England Journal of Medicine, vol. 348, no. 25, pp. 2491–2499, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. He, H. F. VanBrocklin, B. L. Franc, Y. Seo, and E. F. Jones, “Nanoprobes for medical diagnosis: current status of nanotechnology in molecular imaging,” Current Nanoscience, vol. 4, no. 1, pp. 17–29, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Rauch, W. Kolch, S. Laurent, and M. Mahmoudi, “Big signals from small particles: regulation of cell signaling pathways by nanoparticles,” Chemical Reviews, vol. 113, pp. 3391–3406, 2013.
  9. M. Mahmoudi, H. Hofmann, B. Rothen-Rutishauser, and A. Petri-Fink, “Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles,” Chemical Reviews, vol. 112, no. 4, pp. 2323–2338, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. A. K. Gupta and M. Gupta, “Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications,” Biomaterials, vol. 26, no. 18, pp. 3995–4021, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Jordan, R. Scholz, K. Maier-Hauff et al., “Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia,” Journal of Magnetism and Magnetic Materials, vol. 225, no. 1-2, pp. 118–126, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Zhou, S. Ni, X. Wang, and F. Wu, “Adsorption of sodium oleate on nano-sized Fe3O4 particles prepared by co-precipitation,” Current Nanoscience, vol. 3, no. 3, pp. 259–263, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. A. K. Gupta and S. Wells, “Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies,” IEEE Transactions on Nanobioscience, vol. 3, no. 1, pp. 66–73, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Lee, T. Isobe, and M. Senna, “Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH,” Journal of Colloid and Interface Science, vol. 177, no. 2, pp. 490–494, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Santra, R. Tapec, N. Theodoropoulou, J. Dobson, A. Hebard, and W. Tan, “Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants,” Langmuir, vol. 17, no. 10, pp. 2900–2906, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Ulman, “Formation and structure of self-assembled monolayers,” Chemical Reviews, vol. 96, no. 4, pp. 1533–1554, 1996. View at Scopus
  17. E. E. Carpenter, “Iron nanoparticles as potential magnetic carriers,” Journal of Magnetism and Magnetic Materials, vol. 225, no. 1-2, pp. 17–20, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Lin, W. Zhou, A. Kumbhar et al., “Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly,” Journal of Solid State Chemistry, vol. 159, no. 1, pp. 26–31, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Xu, Y. Hou, and S. Sun, “Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties,” Journal of the American Chemical Society, vol. 129, no. 28, pp. 8698–8699, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. G. K. Kouassi, “Magnetic and gold-coated magnetic iron oxide nanoparticles as detection tools: preparation, characterization, and biosensing applications,” Current Nanoscience, vol. 7, no. 4, pp. 510–523, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Wu, X.-D. Zhang, P.-X. Liu, L.-A. Zhang, F.-Y. Fan, and M.-L. Guo, “Gold nanostructure: fabrication, surface modification, targeting imaging, and enhanced radiotherapy,” Current Nanoscience, vol. 7, no. 1, pp. 110–118, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. U. Tamer, Y. Gündoǧdu, I. H. Boyaci, and K. Pekmez, “Synthesis of magnetic core-shell Fe3O4-Au nanoparticle for biomolecule immobilization and detection,” Journal of Nanoparticle Research, vol. 12, no. 4, pp. 1187–1196, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. H.-Y. Xie, R. Zhen, B. Wang, Y.-J. Feng, P. Chen, and J. Hao, “Fe3O4/au core/shell nanoparticles modified with Ni2+-nitrilotriacetic acid specific to histidine-tagged proteins,” Journal of Physical Chemistry C, vol. 114, no. 11, pp. 4825–4830, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. Y.-R. Cui, C. Hong, Y.-L. Zhou, Y. Li, X.-M. Gao, and X.-X. Zhang, “Synthesis of orientedly bioconjugated core/shell Fe3O4@Au magnetic nanoparticles for cell separation,” Talanta, vol. 85, no. 3, pp. 1246–1252, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Wu, Q. He, H. Chen, J. Tang, and L. Nie, “Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles,” Nanotechnology, vol. 18, no. 14, Article ID 145609, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Gole, C. Dash, V. Ramakrishnan et al., “Pepsin-gold colloid conjugates: preparation, characterization, and enzymatic activity,” Langmuir, vol. 17, no. 5, pp. 1674–1679, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Gole, C. Dash, C. Soman, S. R. Sainkar, M. Rao, and M. Sastry, “On the preparation, characterization, and enzymatic activity of fungal protease-gold colloid bioconjugates,” Bioconjugate Chemistry, vol. 12, no. 5, pp. 684–690, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. M. L. Kakade, D. H. Swenson, and I. E. Liener, “Note on the determination of chymotrypsin and chymotrypsin inhibitor activity using casein,” Analytical Biochemistry, vol. 33, no. 2, pp. 255–258, 1970. View at Scopus
  29. L.-L. Pang, J.-S. Li, J.-H. Jiang, Y. Le, G. L. Shen, and R.-Q. Yu, “A novel detection method for DNA point mutation using QCM based on Fe3O4/Au core/shell nanoparticle and DNA ligase reaction,” Sensors and Actuators B, vol. 127, no. 2, pp. 311–316, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Mandal, S. Kundu, S. K. Ghosh et al., “Magnetite nanoparticles with tunable gold or silver shell,” Journal of Colloid and Interface Science, vol. 286, no. 1, pp. 187–194, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Sun, S. Zhou, P. Hou et al., “Synthesis and characterization of biocompatible Fe3O4 nanoparticles,” Journal of Biomedical Materials Research A, vol. 80, no. 2, pp. 333–341, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. M.-E. Aubin-Tam and K. Hamad-Schifferli, “Structure and function of nanoparticle-protein conjugates,” Biomedical Materials, vol. 3, no. 3, Article ID 034001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. M. R. Eftink and C. A. Ghiron, “Fluorescence quenching studies with proteins,” Analytical Biochemistry, vol. 114, no. 2, pp. 199–227, 1981. View at Scopus
  34. D. Li, Q. He, Y. Cui, L. Duan, and J. Li, “Immobilization of glucose oxidase onto gold nanoparticles with enhanced thermostability,” Biochemical and Biophysical Research Communications, vol. 355, no. 2, pp. 488–493, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Koneracká, P. Kopčanský, M. Antalík et al., “Immobilization of proteins and enzymes to fine magnetic particles,” Journal of Magnetism and Magnetic Materials, vol. 201, no. 1–3, pp. 427–430, 1999. View at Scopus
  36. A. Dyal, K. Loos, M. Noto et al., “Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles,” Journal of the American Chemical Society, vol. 125, no. 7, pp. 1684–1685, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. G. K. Kouassi, J. Irudayaraj, and G. McCarty, “Examination of cholesterol oxidase attachment to magnetic nanoparticles,” Journal of Nanobiotechnology, vol. 3, article 1, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Hong, P. Gong, D. Xu, L. Dong, and S. Yao, “Stabilization of α-chymotrypsin by covalent immobilization on amine-functionalized superparamagnetic nanogel,” Journal of Biotechnology, vol. 128, no. 3, pp. 597–605, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Laurent, C. Burtea, C. Thirifays, U. O. Häfeli, and M. Mahmoudi, “Crucial ignored parameters on nanotoxicology: the importance of toxicity assay modifications and ‘cell vision’,” PLoS ONE, vol. 7, no. 1, Article ID e29997, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Lesniak, F. Fenaroli, M. P. Monopoli, C. Åberg, K. A. Dawson, and A. Salvati, “Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells,” ACS Nano, vol. 6, pp. 5845–5857, 2012.
  41. M. Mahmoudi, I. Lynch, M. R. Ejtehadi, M. P. Monopoli, F. B. Bombelli, and S. Laurent, “Protein-nanoparticle interactions: opportunities and challenges,” Chemical Reviews, vol. 111, no. 9, pp. 5610–5637, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. M. P. Monopoli, D. Walczyk, A. Campbell et al., “Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles,” Journal of the American Chemical Society, vol. 133, no. 8, pp. 2525–2534, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Walczyk, F. B. Bombelli, M. P. Monopoli, I. Lynch, and K. A. Dawson, “What the cell “sees” in bionanoscience,” Journal of the American Chemical Society, vol. 132, no. 16, pp. 5761–5768, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Mahmoudi, S. N. Saeedi-Eslami, M. A. Shokrgozar et al., “Cell, “vision”: complementary factor of protein corona in nanotoxicology,” Nanoscale, vol. 4, pp. 5461–5468, 2012.
  45. M. Mahmoudi, S. Laurent, M. A. Shokrgozar, and M. Hosseinkhani, “Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles,” ACS Nano, vol. 5, no. 9, pp. 7263–7276, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. M. P. Klein, M. R. Nunes, R. C. Rodrigues et al., “Effect of thesupport size on the properties of β-galactosidase immobilized on chitosan: advantages and disadvantages of macro and nanoparticles,” Biomacromolecules, vol. 13, pp. 2456–2464, 2012.
  47. M.-E. Aubin-Tam, W. Hwang, and K. Hamad-Schifferli, “Site-directed nanoparticle labeling of cytochrome c,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 11, pp. 4095–4100, 2009. View at Publisher · View at Google Scholar · View at Scopus