About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2013 (2013), Article ID 939531, 6 pages
http://dx.doi.org/10.1155/2013/939531
Research Article

Photocatalytic BiFeO3 Nanofibrous Mats for Effective Water Treatment

Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada T6G 2V4

Received 31 January 2013; Revised 9 April 2013; Accepted 8 May 2013

Academic Editor: Jorge Seminario

Copyright © 2013 Parmiss Mojir Shaibani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Ternes and U. von Gunten, “Editorial to special issue in Water Research. Emerging contaminants in water,” Water Research, vol. 44, no. 2, p. 351, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Savage and M. S. Diallo, “Nanomaterials and water purification: opportunities and challenges,” Journal of Nanoparticle Research, vol. 7, no. 4-5, pp. 331–342, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Iscan, “Hazard identification for contaminants,” Toxicology, vol. 205, no. 3, pp. 195–199, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. H. F. Schröder, “Selective determination of non-biodegradable polar, organic pollutants in waste water related to functional groups using flow injection combined with tandem mass spectrometry,” Water Science and Technology, vol. 34, no. 7-8, pp. 21–28, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Hernandez, M. Zappi, J. Colucci, and R. Jones, “Comparing the performance of various advanced oxidation processes for treatment of acetone contaminated water,” Journal of Hazardous Materials, vol. 92, no. 1, pp. 33–50, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Keller, G. Rebmann, E. Barraud, O. Zahraa, and V. Keller, “Macroscopic carbon nanofibers for use as photocatalyst support,” Catalysis Today, vol. 101, no. 3-4, pp. 323–329, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. J. M. Herrmann, “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants,” Catalysis Today, vol. 53, no. 1, pp. 115–129, 1999. View at Scopus
  8. M. S. Lee, S. S. Park, G. D. Lee, C. S. Ju, and S. S. Hong, “Synthesis of TiO2 particles by reverse microemulsion method using nonionic surfactants with different hydrophilic and hydrophobic group and their photocatalytic activity,” Catalysis Today, vol. 101, no. 3-4, pp. 283–290, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Hussain, R. Ceccarelli, D. L. Marchisio, D. Fino, N. Russo, and F. Geobaldo, “Synthesis, characterization, and photocatalytic application of novel TiO2 nanoparticles,” Chemical Engineering Journal, vol. 157, no. 1, pp. 45–51, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Chuangchote, J. Jitputti, T. Sagawa, and S. Yoshikawa, “Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers,” ACS Applied Materials & Interfaces, vol. 1, no. 5, pp. 1140–1143, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Liu, X. Zhang, S. Nishimoto, T. Murakami, and A. Fujishima, “Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays,” Environmental Science and Technology, vol. 42, no. 22, pp. 8547–8551, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Sunada, Y. Kikuchi, K. Hashimoto, and A. Fujishima, “Bactericidal and detoxification effects of TiO2 thin film photocatalysts,” Environmental Science and Technology, vol. 32, no. 5, pp. 726–728, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. X. H. Xia, Y. Liang, Z. Wang, J. Fan, Y. S. Luo, and Z. J. Jia, “Synthesis and photocatalytic properties of TiO2 nanostructure,” Materials Research Bulletin, vol. 43, no. 8-9, pp. 2187–2195, 2008.
  14. S. K. Choi, S. Kim, S. K. Lim, and H. Park, “Photocatalytic comparison of TiO2 nanoparticles and electrospun TiO2 nanofibers: effects of mesoporosity and interparticle charge transfer,” Journal of Physical Chemistry C, vol. 114, no. 39, pp. 16475–16480, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Laera, B. Jin, H. Zhu, and A. Lopez, “Photocatalytic activity of TiO2 nanofibers in simulated and real municipal effluents,” Catalysis Today, vol. 161, no. 1, pp. 147–152, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. J. F. Ihlefeld, N. J. Podraza, Z. K. Liu et al., “Optical band gap of BiFeO3 grown by molecular-beam epitaxy,” Applied Physics Letters, vol. 92, no. 14, Article ID 142908, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. J. Hauser, J. Zhang, L. Mier et al., “Characterization of electronic structure and defect states of thin epitaxial BiFeO3 films by UV-visible absorption and cathodoluminescence spectroscopies,” Applied Physics Letters, vol. 92, no. 22, Article ID 222901, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Li, Y. H. Lin, B. P. Zhang, C. W. Nan, and Y. Wang, “Photocatalytic and magnetic behaviors observed in nanostructured BiFeO3 particles,” Journal of Applied Physics, vol. 105, no. 5, Article ID 056105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Xu, Y. H. Lin, P. Li, L. Shu, and C. W. Nan, “Synthesis and photocatalytic behaviors of high surface area BiFeO3 thin films,” Journal of the American Ceramic Society, vol. 94, no. 8, pp. 2296–2299, 2011.
  20. F. Gao, X. Chen, K. Yin et al., “Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles,” Advanced Materials, vol. 19, no. 19, pp. 2889–2892, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Leyva, E. Moctezuma, M. G. Ruíz, and L. Torres-Martínez, “Photodegradation of phenol and 4-chlorophenol by BaO-Li2O-TiO2 catalysts,” Catalysis Today, vol. 40, no. 4, pp. 367–376, 1998. View at Scopus
  22. N. Shakti and P. S. Gupta, “Structural and optical properties of sol-gel prepared ZnO thin film,” Applied Physics Research, vol. 2, no. 1, pp. 19–28, 2010.
  23. K. Prashanthi, G. Thakur, and T. Thundat, “Surface enhanced strong visible photoluminescence from one-dimensional multiferroic BiFeO3 nanostructures,” Surface Science, vol. 606, pp. L83–L86, 2012.
  24. M. Bertelli and E. Selli, “Reaction paths and efficiency of photocatalysis on TiO2 and of H2O2 photolysis in the degradation of 2-chlorophenol,” Journal of Hazardous Materials, vol. 138, no. 1, pp. 46–52, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. K. V. Baiju, S. Shukla, K. S. Sandhya, J. James, and K. G. K. Warrier, “Photocatalytic activity of sol-gel-derived nanocrystalline titania,” Journal of Physical Chemistry C, vol. 111, no. 21, pp. 7612–7622, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. I. Poulios and I. Tsachpinis, “Photodegradation of the textile dye Reactive Black 5 in the presence of semiconducting oxides,” Journal of Chemical Technology and Biotechnology, vol. 74, pp. 349–357, 1999.