About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2014 (2014), Article ID 193162, 6 pages
http://dx.doi.org/10.1155/2014/193162
Research Article

Synthesis of Nickel and Nickel Hydroxide Nanopowders by Simplified Chemical Reduction

Department of Chemistry, University of North Texas, 1155 Union Circle No. 305070, Denton, TX 76203, USA

Received 31 July 2013; Revised 3 December 2013; Accepted 4 December 2013; Published 5 February 2014

Academic Editor: Thomas Thundat

Copyright © 2014 Jeerapan Tientong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. T. Reetz and W. Helbig, “Size-selective synthesis of nanostructured transition metal clusters,” Journal of the American Chemical Society, vol. 116, no. 16, pp. 7401–7402, 1994. View at Publisher · View at Google Scholar
  2. M. Huang, Y. Shen, W. Cheng et al., “Nanocomposite films containing Au nanoparticles formed by electrochemical reduction of metal ions in the multilayer films as electrocatalyst for dioxygen reduction,” Analytica Chimica Acta, vol. 535, no. 1-2, pp. 15–22, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. B. P. S. Chauhan, J. S. Rathore, and N. Glloxhani, “First example of “palladium-nanoparticle”-catalyzed selective alcoholysis of polyhydrosiloxane: a new approach to macromolecular grafting,” Applied Organometallic Chemistry, vol. 19, no. 4, pp. 542–550, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Zhang, X. Wang, L. Li, C. Li, and S. Peng, “Effect of reductant and PVP on morphology and magnetic property of ultrafine Ni powders prepared via hydrothermal route,” Materials Research Bulletin, vol. 48, no. 10, pp. 4230–4234, 2013. View at Publisher · View at Google Scholar
  5. A. Corrias, G. Ennas, G. Licheri, G. Marongiu, and G. Paschina, “Amorphous metallic powders prepared by chemical reduction of metal ions with potassium borohydride in aqueous solution,” Chemistry of Materials, vol. 2, no. 4, pp. 363–366, 1990. View at Scopus
  6. C. Wang, X. M. Zhang, X. F. Qian, Y. Xie, W. Z. Wang, and Y. T. Qian, “Preparation of nanocrystallive nickel powders through hydrothermal-reduction method,” Materials Research Bulletin, vol. 33, no. 12, pp. 1747–1751, 1998. View at Scopus
  7. L. A. Saghatforoush, M. Hasanzadeh, S. Sanati, and R. Mehdizadeh, “Ni(OH)2 and NiO nanostructures: synthesis, characterization and electrochemical performance,” Bulletin of the Korean Chemical Society, vol. 33, no. 8, pp. 2613–2618, 2012. View at Publisher · View at Google Scholar
  8. S. Papp and I. Dékány, “Stabilization of palladium nanoparticles by polymers and layer silicates,” Colloid and Polymer Science, vol. 281, no. 8, pp. 727–737, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. P. K. Khanna and V. V. V. S. Subbarao, “Nanosized silver powder via reduction of silver nitrate by sodium formaldehydesulfoxylate in acidic pH medium,” Materials Letters, vol. 57, no. 15, pp. 2242–2245, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Zhou, S. Chen, H. Ren, L. Wu, and S. Zhao, “Electrochemical formation of platinum nanoparticles by a novel rotating cathode method,” Physica E, vol. 27, no. 3, pp. 341–350, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Rodríguez-Sánchez, M. C. Blanco, and M. A. López-Quintela, “Electrochemical synthesis of silver nanoparticles,” Journal of Physical Chemistry B, vol. 104, no. 41, pp. 9683–9688, 2000. View at Scopus
  12. M. T. Reetz, M. Winter, R. Breinbauer, T. Thurn-Albrecht, and W. Vogel, “Size-selective electrochemical preparation of surfactant-stabilized Pd-, Ni- and Pt/Pd colloids,” Chemistry, vol. 7, no. 5, pp. 1084–1094, 2001.
  13. H. Feng, Z. Zhengyi, X. Yaofu, W. Wuxiang, H. Yafang, and W. Run, “A new electrolytic method of preparing ultrafine metallic powders,” Journal of Materials Processing Technology, vol. 137, no. 1–3, pp. 201–203, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Yu and H. Liu, “Quantity synthesis of nanosized metal clusters,” Chemistry of Materials, vol. 10, no. 5, pp. 1205–1207, 1998. View at Publisher · View at Google Scholar
  15. N. Aihara, K. Torigoe, and K. Esumi, “Preparation and characterization of gold and silver nanoparticles in layered laponite suspensions,” Langmuir, vol. 14, no. 17, pp. 4945–4949, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. U. N. Tripathi, A. Soni, V. Ganesan, and G. S. Okram, “Influence of polyvinylpyrrolidone on particle size of Ni nanoparticles preparation,” in Proceedings of the 56th Dae Solid State Physics Symposium, vol. 1447 of AIP Conference Proceedings, pp. 437–438, Kattankulathur, India, December 2011. View at Publisher · View at Google Scholar
  17. S.-H. Wu and D.-H. Chen, “Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol,” Journal of Colloid and Interface Science, vol. 259, no. 2, pp. 282–286, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. J. W. Park, E. H. Chae, S. H. Kim et al., “Preparation of fine Ni powders from nickel hydrazine complex,” Materials Chemistry and Physics, vol. 97, no. 2-3, pp. 371–378, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. D.-P. Wang, D.-B. Sun, H.-Y. Yu, and H.-M. Meng, “Morphology controllable synthesis of nickel nanopowders by chemical reduction process,” Journal of Crystal Growth, vol. 310, no. 6, pp. 1195–1201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. B. J. G. Freitas, “Nickel hydroxide powder for NiO·OH/Ni(OH)2 electrodes of the alkaline batteries,” Journal of Power Sources, vol. 93, no. 1-2, pp. 163–173, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. D. S. Hall, D. J. Lockwood, S. Poirier, C. Bock, and B. R. MacDougall, “Raman and infrared spectroscopy of α and β phases of thin nickel hydroxide films electrochemically formed on nickel,” The Journal of Physical Chemistry A, vol. 116, no. 25, pp. 6771–6784, 2012. View at Publisher · View at Google Scholar
  22. R.-Y. Chen and K.-G. Zhou, “Preparation of ultrafine nickel powder by wet chemical process,” Transactions of Nonferrous Metals Society of China, vol. 16, no. 5, pp. 1223–1227, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. D. V. Goia, “Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions,” Journal of Materials Chemistry, vol. 14, pp. 451–458, 2004. View at Publisher · View at Google Scholar
  24. “Joint Committee on Powder Diffraction Standard (JCPDS),” Tech. Rep. 00-004-0850, International Center for Diffraction Data (ICDD), Swarthmore, Pa, USA.
  25. B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, Prentice Hall, New York, NY, USA, 3rd edition, 2001.
  26. H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, John Wiley & Sons, New York, NY, USA, 2nd edition, 1974.
  27. “Joint Committee on Powder Diffraction Standard (JCPDS),” Tech. Rep. 00-014-0117, International Center for Diffraction Data (ICDD), Swarthmore, Pa, USA.
  28. G. G. Couto, J. J. Klein, W. H. Schreiner, D. H. Mosca, A. J. A. de Oliveira, and A. J. G. Zarbin, “Nickel nanoparticles obtained by a modified polyol process: synthesis, characterization, and magnetic properties,” Journal of Colloid and Interface Science, vol. 311, no. 2, pp. 461–468, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Harish, R. Renu, and S. R. Kumar, “Synthesis of nickel hydroxide nanoparticles by reverse micelle method and its antimicrobial activity,” Research Journal of Chemical Sciences, vol. 1, no. 9, pp. 42–48, 2011.
  30. Q. Song, Z. Tang, H. Guo, and S. L. I. Chan, “Structural characteristics of nickel hydroxide synthesized by a chemical precipitation route under different pH values,” Journal of Power Sources, vol. 112, no. 2, pp. 428–434, 2002. View at Publisher · View at Google Scholar · View at Scopus