About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2014 (2014), Article ID 324089, 19 pages
http://dx.doi.org/10.1155/2014/324089
Review Article

Nanocatalysis: Academic Discipline and Industrial Realities

Department of Chemistry, Institute of Physical Chemistry, Business Chemistry Group, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

Received 24 July 2013; Revised 30 October 2013; Accepted 18 December 2013; Published 17 February 2014

Academic Editor: Carlos R. Cabrera

Copyright © 2014 Sandro Olveira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Rashidi and K. Khosravi-Darani, “The applications of nanotechnology in food industry,” Critical Reviews in Food Science and Nutrition, vol. 51, no. 8, pp. 723–730, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. Q. Chaudhry and L. Castle, “Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries: agri-food nano applications: ensuring social benefits,” Trends in Food Science and Technology, vol. 22, no. 11, pp. 595–603, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. M. W. Ambrogio, C. R. Thomas, Y.-L. Zhao, J. I. Zink, and J. F. Stoddart, “Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine,” Accounts of Chemical Research, vol. 44, no. 10, pp. 903–913, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. I. K. Herrmann, M. Urner, F. M. Koehler et al., “Blood purification using functionalized core/shell nanomagnets,” Small, vol. 6, no. 13, pp. 1388–1392, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Nischala, T. N. Rao, and N. Hebalkar, “Silica-silver core-shell particles for antibacterial textile application,” Colloids and Surfaces B, vol. 82, no. 1, pp. 203–208, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Zimmermann, F. A. Reifler, G. Fortunato, L.-C. Gerhardt, and S. Seeger, “A simple, one-step approach to durable and robust superhydrophobic textiles,” Advanced Functional Materials, vol. 18, no. 22, pp. 3662–3669, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Dorrer and J. Rühe, “Micro to nano: surface size scale and superhydrophobicity,” Beilstein Journal of Nanotechnology, vol. 2, no. 1, pp. 327–332, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. C. H. Lee, H. S. Lim, J. Kim, and J. H. Cho, “Counterion-induced reversibly switchable transparency in smart windows,” ACS Nano, vol. 5, no. 9, pp. 7397–7403, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. S. P. Forster, S. Olveira, and S. Seeger, “Nanotechnology in the market: promises and realities,” International Journal of Nanotechnology, vol. 8, no. 6-7, pp. 592–613, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. Finanzen.net GmbH, “Langfristiger platinpreischart: 10 jahreschart,” 2012, http://www.finanzen.net/rohstoffe/platinpreis/Chart.
  11. M. Poliakoff, J. M. Fitzpatrick, T. R. Farren, and P. T. Anastas, “Green chemistry: science and politics of change,” Science, vol. 297, no. 5582, pp. 807–810, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. P. T. Anastas and J. B. Zimmerman, “Design through the 12 principles of green engineering,” Environmental Science and Technology, vol. 37, no. 5, pp. 94A–101A, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. QuantumsSphere Inc., “QSI-nano manganese product profile,” 2009, http://www.qsinano.com/new/qsi_nano_manganese_mn_5_oct_09.pdf.
  14. R. N. Grass, E. K. Athanassiou, and W. J. Stark, “Covalently functionalized cobalt nanoparticles as a platform for magnetic separations in organic synthesis,” Angewandte Chemie International Edition, vol. 46, no. 26, pp. 4909–4912, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Schlögl and S. B. Abd Hamid, “Nanocatalysis: mature science revisited of something really new?” Angewandte Chemie International Edition, vol. 43, no. 13, pp. 1628–1637, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. E. L. Hu, S. M. Davis, R. Davis, and E. Scher, “Applications: catalysis by nanostructured materials,” in Nanotechnology Research Directions for Societal Needs in 2020, M. C. Roco, C. A. Mirkin, and M. C. Hersam, Eds., pp. 341–360, Springer, Berlin, Germany, 2010.
  17. J.-S. Chang, S. H. Jhung, Y. K. Hwang, S.-E. Park, and J.-S. Hwang, “Syntheses and applications of nanocatalysts based on nanoporous materials,” International Journal of Nanotechnology, vol. 3, no. 2-3, pp. 150–180, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. R. M. Mohamed, D. L. McKinney, and W. M. Sigmund, “Enhanced nanocatalysts,” Materials Science and Engineering R, vol. 73, no. 1, pp. 1–13, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. S. B. Kalidindi and B. R. Jagirdar, “Nanocatalysis and prospects of green chemistry,” ChemSusChem, vol. 5, no. 1, pp. 65–75, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Zahmakiran and S. Özkar, “Metal nanoparticles in liquid phase catalysis; from recent advances to future goals,” Nanoscale, vol. 3, no. 9, pp. 3462–3481, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Polshettiwar and R. S. Varma, “Green chemistry by nano-catalysis,” Green Chemistry, vol. 12, no. 5, pp. 743–754, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Shylesh, V. Schünemann, and W. R. Thiel, “Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis,” Angewandte Chemie International Edition, vol. 49, no. 20, pp. 3428–3459, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. C. R. Henry, “Catalysis by nanoparticles,” in Nanocatalysis, U. Heiz and U. Landman, Eds., pp. 245–268, Springer, Berlin, Germany, 2nd edition, 2007. View at Publisher · View at Google Scholar
  24. G. Pacchioni, “Nanocatalysis: staying put,” Nature Materials, vol. 8, no. 3, pp. 167–168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. A. J. Gellman and N. Shukla, “Nanocatalysis: more than speed,” Nature Materials, vol. 8, no. 2, pp. 87–88, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Zhou, R. Balee, and R. Groenendaal, “Nanoparticle and nanostructure catalysts: technologies and markets,” Nanotechnology Law & Business, vol. 2, no. 3, pp. 222–229, 2005. View at Scopus
  27. A. Behr and P. Neubert, Applied Homogeneous Catalysis, Wiley-VCH, Weinheim, Germany, 2012.
  28. P. W. N. M. van Leeuwen, Homogeneous Catalysis: Understanding the Art, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004.
  29. D. J. Cole-Hamilton, “Homogeneous catalysis—new approaches to catalyst separation, recovery, and recycling,” Science, vol. 299, no. 5613, pp. 1702–1706, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Jacoby, “Perfecting solid-catalyst synthesis,” Chemical and Engineering News, vol. 87, no. 17, pp. 37–38, 2009. View at Scopus
  31. M. Zäch, C. Hägglund, D. Chakarov, and B. Kasemo, “Nanoscience and nanotechnology for advanced energy systems,” Current Opinion in Solid State and Materials Science, vol. 10, no. 3-4, pp. 132–143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. J. M. Campelo, D. Luna, R. Luque, J. M. Marinas, and A. A. Romero, “Sustainable preparation of supported metal nanoparticles and their applications in catalysis,” ChemSusChem, vol. 2, no. 1, pp. 18–45, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. W. Teunissen, A. A. Bol, and J. W. Geus, “Magnetic catalyst bodies,” Catalysis Today, vol. 48, no. 1–4, pp. 329–336, 1999. View at Scopus
  34. S. Chaturvedi, P. N. Dave, and N. K. Shah, “Applications of nano-catalyst in new era,” Journal of Saudi Chemical Society, vol. 16, pp. 307–325, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. C. T. Campbell, “The active site in nanoparticle gold catalysis,” Science, vol. 306, no. 5694, pp. 234–235, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Haruta, “When gold is not noble: catalysis by nanoparticles,” Chemical Record, vol. 3, no. 2, pp. 75–87, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. Z. Ma and S. Dai, “Development of novel supported gold catalysts: a materials perspective,” Nano Research, vol. 4, no. 1, pp. 3–32, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. S. A. C. Carabineiro, N. Bogdanchikova, M. Avalos-Borja, A. Pestryakov, P. B. Tavares, and J. L. Figueiredo, “Gold supported on metal oxides for carbon monoxide oxidation,” Nano Research, vol. 4, no. 2, pp. 180–193, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Astruc, F. Lu, and J. R. Aranzaes, “Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis,” Angewandte Chemie International Edition, vol. 44, no. 48, pp. 7852–7872, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. J. A. Widegren and R. G. Finke, “A review of the problem of distinguishing true homogeneous catalysis from soluble or other metal-particle heterogeneous catalysis under reducing conditions,” Journal of Molecular Catalysis A, vol. 198, no. 1-2, pp. 317–341, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. O. Domínguez-Quintero, S. Martínez, Y. Henríquez, L. D’Ornelas, H. Krentzien, and J. Osuna, “Silica-supported palladium nanoparticles show remarkable hydrogenation catalytic activity,” Journal of Molecular Catalysis A, vol. 197, no. 1-2, pp. 185–191, 2003. View at Publisher · View at Google Scholar
  42. P. N. Rao, “Nanocatalysis: applications in the chemical industry,” 2010, http://www.nanowerk.com/spotlight/spotid=18846.php.
  43. P. T. Anastas and J. C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, Oxford, UK, 1998.
  44. P. T. Anastas, L. G. Heine, and T. C. Williamson, “Green chemical syntheses and processes: introduction,” in Green Chemical Syntheses and Processes, P. T. Anastas, L. G. Heine, and T. C. Williamson, Eds., pp. 1–6, American Chemical Society, Washington, DC, USA, 2000.
  45. R. S. Varma, “Greener approach to nanomaterials and their sustainable applications,” Current Opinion in Chemical Engineering, vol. 1, no. 2, pp. 123–128, 2012. View at Publisher · View at Google Scholar
  46. S. Y. Tang, R. A. Bourne, R. L. Smith, and M. Poliakoff, “The 24 principles of green engineering and green chemistry: ‘improvements productively’,” Green Chemistry, vol. 10, pp. 268–269, 2008. View at Publisher · View at Google Scholar
  47. G. A. Somorjai, H. Frei, and J. Y. Park, “Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques,” Journal of the American Chemical Society, vol. 131, no. 46, pp. 16589–16605, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. K. A. Manbeck, N. E. Musselwhite, L. M. Carl et al., “Factors affecting activity and selectivity during cyclohexanone hydrogenation with colloidal platinum nanocatalysts,” Applied Catalysis A, vol. 384, no. 1-2, pp. 58–64, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. B. Zhou, H. Trevino, Z. Wu, Z. Zhou, and C. Liu, “Reforming nanocatalysts and method of making and using such catalysts,” US patent no. 7569508, Headwaters Technology Innovation LLC, 2005.
  50. K. Mori, N. Yoshioka, Y. Kondo, T. Takeuchi, and H. Yamashita, “Catalytically active, magnetically separable, and water-soluble FePt nanoparticles modified with cyclodextrin for aqueous hydrogenation reactions,” Green Chemistry, vol. 11, no. 9, pp. 1337–1342, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. K.-S. Kim, D. Demberelnyamba, and H. Lee, “Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids,” Langmuir, vol. 20, no. 3, pp. 556–560, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. M. J. Eckelman, J. B. Zimmerman, and P. T. Anastas, “Toward green nano: E-factor analysis of several nanomaterial syntheses,” Journal of Industrial Ecology, vol. 12, no. 3, pp. 316–328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. Z. Mirjafary, H. Saeidian, A. Sadeghi, and F. M. Moghaddam, “ZnO nanoparticles: an efficient nanocatalyst for the synthesis of β-acetamido ketones/esters via a multi-component reaction,” Catalysis Communications, vol. 9, no. 2, pp. 299–306, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Virkutyte and R. S. Varma, “Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization,” Chemical Science, vol. 2, no. 5, pp. 837–846, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Shokouhimehr, Y. Piao, J. Kim, Y. Jang, and T. Hyeon, “A magnetically recyclable nanocomposite catalyst for olefin epoxidation,” Angewandte Chemie International Edition, vol. 46, no. 37, pp. 7039–7043, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Wang, J. Zhan, M. Liang, X. Wang, Y. Wei, and L. Gui, “Composite material composed of nanoparticles of transition metal and magnetic ferric oxide, a method of preparing the same, and uses of the same,” US patent no. 7947191, Peiking University, Beijing, China, 2006.
  57. Y. Gao, “Nano-reagents with cooperative catalysis and their uses in multiple phase reactions,” US patent no. 7951744, Southern Illinois University, Carbondale, Ill, USA, 2007.
  58. DECHEMA e. V., Entwicklung eines inhärent sicheren, kostengünstigen und flexiblen verfahrens zur herstellung von wasserstoffperoxidlösungen durch direktsynthese mittels katalytisch beschichteter membranen, DECHEMA e. V., Frankfurt, Germany, 2010.
  59. S. Parasher, M. Rueter, and B. Zhou, “Nanocatalyst ancored onto acid functionalized solid support and method of making and using same,” US patent no. 7045481, Headwaters Nanokinetix, Inc., Lawrenceville, NJ, USA, 2005.
  60. E. G. Derouane, I. Schmidt, H. Lachas, and C. J. H. Christensen, “Improved performance of nano-size H-BEA zeolite catalysts for the Friedel-Crafts acetylation of anisole by acetic anhydride,” Catalysis Letters, vol. 95, no. 1-2, pp. 13–17, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. B. Zhou and M. Rueter, “Integrated hydrogen peroxide production and organic chemical oxidation,” US patent no. 6500969, Hydrocarbon Technologies, Inc., Lawrence Township, NJ, USA, 2001.
  62. H. Li, L. Han, J. Cooper-White, and I. Kim, “Palladium nanoparticles decorated carbon nanotubes: facile synthesis and their applications as highly efficient catalysts for the reduction of 4-nitrophenol,” Green Chemistry, vol. 14, no. 3, pp. 586–591, 2012. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Fischer, R. Hoch, D. Moi, C.-M. Niu, N. Ogata, and H. Tennent, “Functionalized nanotubes,” US patent no. 7854945, Hyperion Catalysis International, Inc., Cambridge, Mass, USA, 2010.
  64. E. V. Basiuk, I. Puente-Lee, J.-L. Claudio-Sánchez, and V. A. Basiuk, “Solvent-free derivatization of pristine multi-walled carbon nanotubes with dithiols,” Materials Letters, vol. 60, no. 29-30, pp. 3741–3746, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. W. Zhou, J. Wang, C. Wang, Y. Du, J. Xu, and P. Yang, “A novel reusable platinum nanocatalyst,” Materials Chemistry and Physics, vol. 122, no. 1, pp. 10–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Wasserscheid and W. Keim, “Ionische Flüssigkeiten—neue “Lösungen” für die Übergangsmetallkatalyse,” Angewandte Chemie, vol. 112, no. 21, pp. 3926–3945, 2000. View at Publisher · View at Google Scholar
  67. G. S. Fonseca, A. P. Umpierre, P. F. P. Fichtner, S. R. Teixeira, and J. Dupont, “The use of imidazolium ionic liquids for the formation and stabilization of Ir0 and Rh0 nanoparticles: efficient catalysts for the hydrogenation of arenes,” Chemistry, vol. 9, no. 14, pp. 3263–3269, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. C. Vollmer, E. Redel, K. Abu-Shandi et al., “Microwave irradiation for the facile synthesis of transition-metal nanoparticles (NPs) in ionic liquids (ILs) from metal-carbonyl precursors and Ru-, Rh-, and Ir-NP/IL dispersions as biphasic liquid-liquid hydrogenation nanocatalysts for cyclohexene,” Chemistry—A European Journal, vol. 16, no. 12, pp. 3849–3858, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. C. Zhao, H.-Z. Wang, N. Yan et al., “Ionic-liquid-like copolymer stabilized nanocatalysts in ionic liquids: II. Rhodium-catalyzed hydrogenation of arenes,” Journal of Catalysis, vol. 250, no. 1, pp. 33–40, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Dupont and D. de Oliveira Silva, “Transition-metal nanoparticle catalysis in imidazolium ionic liquids,” in Nanoparticles and Catalysis, D. Astruc, Ed., pp. 195–218, Wiley-VCH, Weinheim, Germany, 2007.
  71. A. Fihri, M. Bouhrara, B. Nekoueishahraki, J.-M. Basset, and V. Polshettiwar, “Nanocatalysts for suzuki cross-coupling reactions,” Chemical Society Reviews, vol. 40, no. 10, pp. 5181–5203, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. N. Yan, C. Xiao, and Y. Kou, “Transition metal nanoparticle catalysis in green solvents: novel and smart materials: design, synthesis, structure, properties and applications. In celebration of the centennial anniversary of chemical research and education at Peking University,” Coordination Chemistry Reviews, vol. 254, no. 9-10, pp. 1179–1218, 2010. View at Publisher · View at Google Scholar
  73. J. Hagen, Industrial Catalysis: A Practical Approach, Wiley-VCH, Weinheim, Germany, 2nd edition, 2006.
  74. A. K. M. Fazle Kibria, Y. H. Mo, K. S. Park, K. S. Nahm, and M. H. Yun, “Electrochemical hydrogen storage behaviors of CVD, AD and LA grown carbon nanotubes in KOH medium,” International Journal of Hydrogen Energy, vol. 26, no. 8, pp. 823–829, 2001. View at Publisher · View at Google Scholar · View at Scopus
  75. K. Zhu, D. Wang, and J. Liu, “Self-assembled materials for catalysis,” Nano Research, vol. 2, no. 1, pp. 1–29, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. B. Yilmaz and U. Müller, “Catalytic applications of zeolites in chemical industry,” Topics in Catalysis, vol. 52, no. 6-7, pp. 888–895, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. A. P. Umpierre, E. de Jesús, and J. Dupont, “Turnover numbers and soluble metal nanoparticles,” ChemCatChem, vol. 3, no. 9, pp. 1413–1418, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide,” Journal of Catalysis, vol. 115, no. 2, pp. 301–309, 1989. View at Scopus
  79. T. Hayashi, K. Tanaka, and M. Haruta, “Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen,” Journal of Catalysis, vol. 178, no. 2, pp. 566–575, 1998. View at Scopus
  80. R. Narayanan and M. A. El-Sayed, “Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution,” Nano Letters, vol. 4, no. 7, pp. 1343–1348, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. I. Lee, F. Delbecq, R. Morales, M. A. Albiter, and F. Zaera, “Tuning selectivity in catalysis by controlling particle shape,” Nature Materials, vol. 8, no. 2, pp. 132–138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. R. Pool, “Clusters: strange morsels of matter,” Science, vol. 248, no. 4960, pp. 1186–1188, 1990. View at Scopus
  83. L. N. Lewis, “Chemical catalysis by colloids and clusters,” Chemical Reviews, vol. 93, no. 8, pp. 2693–2730, 1993. View at Scopus
  84. N. Sahiner, O. Ozay, E. Inger, and N. Aktas, “Controllable hydrogen generation by use smart hydrogel reactor containing Ru nano catalyst and magnetic iron nanoparticles,” Journal of Power Sources, vol. 196, no. 23, pp. 10105–10111, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. R. Luque, B. Baruwati, and R. S. Varma, “Magnetically separable nanoferrite-anchored glutathione: aqueous homocoupling of arylboronic acids under microwave irradiation,” Green Chemistry, vol. 12, no. 9, pp. 1540–1543, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. Z. Liu, L. M. Gan, L. Hong, W. Chen, and J. Y. Lee, “Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells,” Journal of Power Sources, vol. 139, no. 1-2, pp. 73–78, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. J.-S. Chang, J.-S. Hwang, S. H. Jhung, S.-E. Park, G. Férey, and A. K. Cheetham, “Nanoporous metal-containing nickel phosphates: a class of shape-selective catalyst,” Angewandte Chemie International Edition, vol. 43, no. 21, pp. 2819–2822, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. G. Glaspell, H. M. A. Hassan, A. Elzatahry, V. Abdalsayed, and M. S. El-Shall, “Nanocatalysis on supported oxides for CO oxidation,” Topics in Catalysis, vol. 47, no. 1-2, pp. 22–31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. J. A. Dahl, B. L. S. Maddux, and J. E. Hutchison, “Toward greener nanosynthesis,” Chemical Reviews, vol. 107, no. 6, pp. 2228–2269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. N. Islam and K. Miyazaki, “Nanotechnology systems of innovation: investigation of scientific disciplines' fusion trend into nanotech,” in Management of Engineering and Technology, pp. 2922–2931, Portland International Center for Management of Engineering and Technology, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. F. Schmidt, “New catalyst preparation technologies—observed from an industrial viewpoint: hoelderich special issue,” Applied Catalysis A, vol. 221, no. 1-2, pp. 15–21, 2001. View at Publisher · View at Google Scholar
  92. B. Corain, G. Schmid, and N. Toshima, Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control, Elsevier, Amsterdam, The Netherlands, 2008.
  93. J. Zhang, J. Worley, S. Dénommée et al., “Synthesis of metal alloy nanoparticles in solution by laser irradiation of a metal powder suspension,” Journal of Physical Chemistry B, vol. 107, no. 29, pp. 6920–6923, 2003. View at Scopus
  94. P. Garrigue, M.-H. Delville, C. Labrugère et al., “Top-down approach for the preparation of colloidal carbon nanoparticles,” Chemistry of Materials, vol. 16, no. 16, pp. 2984–2986, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. S. T. Hussain, “Novel nano-catalyst for fast track bio-diesel production from non-edible oils,” US patent Application US 2011/0209389 A1, 2011.
  96. M. N. Nadagouda and R. S. Varma, “Green and controlled synthesis of gold and platinum nanomaterials using vitamin B2: density-assisted self-assembly of nanospheres, wires and rods,” Green Chemistry, vol. 8, no. 6, pp. 516–518, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. M. A. El-Sayed, “Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals,” Accounts of Chemical Research, vol. 37, no. 5, pp. 326–333, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. J. M. Thomas and R. Raja, “Nanopore and nanoparticle catalysts,” Chemical Records, vol. 1, no. 6, pp. 448–466, 2001. View at Scopus
  99. M. Faraday, “The Bakerian lecture: experimental relations of gold (and other metals) to light,” Philosophical Transactions of the Royal Society, vol. 147, pp. 145–181, 1857.
  100. G. A. Somorjai and Y. G. Borodko, “Research in nanosciences—great opportunity for catalysis science,” Catalysis Letters, vol. 76, no. 1-2, pp. 1–5, 2001. View at Publisher · View at Google Scholar · View at Scopus
  101. D. Mahajan, P. Gütlich, J. Ensling, K. Pandya, U. Stumm, and P. Vijayaraghavan, “Evaluation of nanosized iron in slurry-phase fischer—tropsch synthesis,” Energy & Fuels, vol. 17, no. 5, pp. 1210–1221, 2003. View at Publisher · View at Google Scholar · View at Scopus
  102. H. Bönnemann and R. M. Richards, “Nanoscopic metal particles—synthetic methods and potential applications,” European Journal of Inorganic Chemistry, vol. 2001, no. 10, pp. 2455–2480, 2001. View at Scopus
  103. N. Toshima and T. Yonezawa, “Bimetallic nanoparticles—novel materials for chemical and physical applications,” New Journal of Chemistry, vol. 22, no. 11, pp. 1179–1201, 1998. View at Scopus
  104. G. R. Patzke, Y. Zhou, R. Kontic, and F. Conrad, “Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations,” Angewandte Chemie International Edition, vol. 50, no. 4, pp. 826–859, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. B. L. Cushing, V. L. Kolesnichenko, and C. J. O'Connor, “Recent advances in the liquid-phase syntheses of inorganic nanoparticles,” Chemical Reviews, vol. 104, no. 9, pp. 3893–3946, 2004. View at Publisher · View at Google Scholar · View at Scopus
  106. W. X. Chen, J. Y. Lee, and Z. Liu, “Microwave-assisted synthesis of carbon supported Pt nanoparticles for fuel cell applications,” Chemical Communications, vol. 8, no. 21, pp. 2588–2589, 2002. View at Publisher · View at Google Scholar · View at Scopus
  107. A. Roucoux, J. Schulz, and H. Patin, “Reduced transition metal colloids: a novel family of reusable catalysts?” Chemical Reviews, vol. 102, no. 10, pp. 3757–3778, 2002. View at Publisher · View at Google Scholar · View at Scopus
  108. A. Denicourt-Nowicki, B. Léger, and A. Roucoux, “N-donor ligands based on bipyridine and ionic liquids: an efficient partnership to stabilize rhodium colloids. Focus on oxygen-containing compounds hydrogenation,” Physical Chemistry Chemical Physics, vol. 13, no. 30, pp. 13510–13517, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. B. Léger, A. Denicourt-Nowicki, H. Olivier-Bourbigou, and A. Roucoux, “Rhodium nanocatalysts stabilized by various bipyridine ligands in nonaqueous ionic liquids: influence of the bipyridine coordination modes in arene catalytic hydrogenation,” Inorganic Chemistry, vol. 47, no. 19, pp. 9090–9096, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. N. Yan, Y. Yuan, and P. J. Dyson, “Rhodium nanoparticle catalysts stabilized with a polymer that enhances stability without compromising activity,” Chemical Communications, vol. 47, no. 9, pp. 2529–2531, 2011. View at Publisher · View at Google Scholar · View at Scopus
  111. V. Mévellec, A. Roucoux, E. Ramirez, K. Philippot, and B. Chaudret, “Surfactant-stabilized aqueous iridium(0) colloidal suspension: an efficient reusable catalyst for hydrogenation of arenes in biphasic media,” Advanced Synthesis and Catalysis, vol. 346, no. 1, pp. 72–76, 2004. View at Scopus
  112. B. J. Hornstein and R. G. Finke, “Transition-metal nanocluster catalysts: scaled-up synthesis, characterization, storage conditions, stability, and catalytic activity before and after storage of polyoxoanion- and tetrabutylammonium-stabilized Ir(0) nanoclusters,” Chemistry of Materials, vol. 15, no. 4, pp. 899–909, 2003. View at Publisher · View at Google Scholar · View at Scopus
  113. C. A. Stowell and B. A. Korgel, “Iridium nanocrystal synthesis and surface coating-dependent catalytic activity,” Nano Letters, vol. 5, no. 7, pp. 1203–1207, 2005. View at Publisher · View at Google Scholar · View at Scopus
  114. The United States Pharmacopeial Convention, “Briefing on revision to general chapter elemental impurities <232>,” 2011, http://www.usp.org/usp-nf/official-text/revision-bulletins/elemental-impurities-limits-and-elemental-impurities-procedures-0.
  115. T.-J. Yoon, W. Lee, Y.-S. Oh, and J.-K. Lee, “Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling,” New Journal of Chemistry, vol. 27, no. 2, pp. 227–229, 2003. View at Publisher · View at Google Scholar · View at Scopus
  116. H. Tang, C. H. Yu, W. Oduoro, Y. He, and S. C. Tsang, “Engineering of a monodisperse core-shell magnetic Ti–O–Si oxidation nanocatalyst,” Langmuir, vol. 24, no. 5, pp. 1587–1590, 2008. View at Publisher · View at Google Scholar · View at Scopus
  117. J. Ge, Q. Zhang, T. Zhang, and Y. Yin, “Core-satellite nanocomposite catalysts protected by a porous silica shell: controllable reactivity, high stability, and magnetic recyclability,” Angewandte Chemie International Edition, vol. 47, no. 46, pp. 8924–8928, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. A. Schätz, T. R. Long, R. N. Grass, W. J. Stark, P. R. Hanson, and O. Reiser, “Immobilization on a nanomagnetic Co/C surface using ROM polymerization: generation of a hybrid material as support for a recyclable palladium catalyst,” Advanced Functional Materials, vol. 20, no. 24, pp. 4323–4328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. S.-E. Park and S. Sujandi, “Green approaches via nanocatalysis with nanoporous materials: functionalization of mesoporous materials for single site catalysis: nano Korea 2006 symposium 4th nano Korea 2006 symposium,” Current Applied Physics, vol. 8, no. 6, pp. 664–668, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. D. G. Shchukin and D. V. Sviridov, “Photocatalytic processes in spatially confined micro- and nanoreactors,” Journal of Photochemistry and Photobiology C, vol. 7, no. 1, pp. 23–39, 2006. View at Publisher · View at Google Scholar · View at Scopus
  121. A. Corma, “From microporous to mesoporous molecular sieve materials and their use in catalysis,” Chemical Reviews, vol. 97, no. 6, pp. 2373–2420, 1997. View at Scopus
  122. D. W. Breck, W. G. Eversole, R. M. Milton, T. B. Reed, and T. L. Thomas, “Crystalline zeolites. I. The properties of a new synthetic zeolite, type A,” Journal of the American Chemical Society, vol. 78, no. 23, pp. 5963–5972, 1956. View at Scopus
  123. T. B. Reed and D. W. Breck, “Crystalline zeolites. II. Crystal structure of synthetic zeolite, type A,” Journal of the American Chemical Society, vol. 78, no. 23, pp. 5972–5977, 1956. View at Scopus
  124. R. M. Barrer, “Synthesis of a zeolitic mineral with chabazite-like sorptive properties,” Journal of the Chemical Society, vol. 2, pp. 127–132, 1948. View at Publisher · View at Google Scholar · View at Scopus
  125. R. M. Barker and E. A. D. White, “The hydrothermal chemistry of silicates—part II: synthetic crystalline sodium aluminosilicates,” Journal of the Chemical Society, pp. 1561–1571, 1952. View at Scopus
  126. C. Baerlocher and L. B. McCusker, “Database of zeolite structures,” 2012, http://www.iza-structure.org/databases/.
  127. L. Puppe, “Zeolithe—Eigenschaften und technische Anwendungen,” Chemie in unserer Zeit, vol. 20, no. 4, pp. 117–127, 1986. View at Publisher · View at Google Scholar
  128. S. Wang and Y. Peng, “Natural zeolites as effective adsorbents in water and wastewater treatment,” Chemical Engineering Journal, vol. 156, no. 1, pp. 11–24, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. J. Yu, “Synthesis of zeolites,” in Introduction to Zeolite Science and Practice, J. Čejka, H. van Bekkum, A. Corma, and F. Schüth, Eds., pp. 39–103, Elsevier, Amsterdam, The Netherlands, 3rd edition, 2007.
  130. R. M. Martín-Aranda and J. Čejka, “Recent advances in catalysis over mesoporous molecular sieves,” Topics in Catalysis, vol. 53, no. 3-4, pp. 141–153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. B. F. G. Johnson, S. A. Raynor, D. S. Shephard et al., “Superior performance of a chiral catalyst confined within mesoporous silica,” Chemical Communications, no. 13, pp. 1167–1168, 1999. View at Scopus
  132. Y.-M. Liu, Y. Cao, N. Yi et al., “Vanadium oxide supported on mesoporous SBA-15 as highly selective catalysts in the oxidative dehydrogenation of propane,” Journal of Catalysis, vol. 224, no. 2, pp. 417–428, 2004. View at Publisher · View at Google Scholar · View at Scopus
  133. J. Y. Ying, C. P. Mehnert, and M. S. Wong, “Synthesis and applications of supramolecular-templated mesoporous materials,” Angewandte Chemie International Edition, vol. 38, no. 1-2, pp. 57–77, 1999. View at Scopus
  134. H. Yang, G. Zhang, X. Hong, and Y. Zhu, “Dicyano-functionalized MCM-41 anchored-palladium complexes as recoverable catalysts for Heck reaction,” Journal of Molecular Catalysis A, vol. 210, no. 1-2, pp. 143–148, 2004. View at Publisher · View at Google Scholar · View at Scopus
  135. F.-Y. Tsai, C.-L. Wu, C.-Y. Mou, M.-C. Chao, H.-P. Lin, and S.-T. Liu, “Palladium bipyridyl complex anchored on nanosized MCM-41 as a highly efficient and recyclable catalyst for Heck reaction,” Tetrahedron Letters, vol. 45, no. 40, pp. 7503–7506, 2004. View at Publisher · View at Google Scholar · View at Scopus
  136. X. Pan, Z. Fan, W. Chen, Y. Ding, H. Luo, and X. Bao, “Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles,” Nature Materials, vol. 6, no. 7, pp. 507–511, 2007. View at Publisher · View at Google Scholar · View at Scopus
  137. J. M. Thomas, B. F. G. Johnson, R. Raja, G. Sankar, and P. A. Midgley, “High-performance nanocatalysts for single-step hydrogenations,” Accounts of Chemical Research, vol. 36, no. 1, pp. 20–30, 2003. View at Publisher · View at Google Scholar · View at Scopus
  138. S.-H. Wu, C.-T. Tseng, Y.-S. Lin, C.-H. Lin, Y. Hung, and C.-Y. Mou, “Catalytic nano-rattle of Au@hollow silica: towards a poison-resistant nanocatalyst,” Journal of Materials Chemistry, vol. 21, no. 3, pp. 789–794, 2011. View at Publisher · View at Google Scholar · View at Scopus
  139. S. H. Joo, J. Y. Park, C.-K. Tsung, Y. Yamada, P. Yang, and G. A. Somorjai, “Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions,” Nature Materials, vol. 8, no. 2, pp. 126–131, 2009. View at Publisher · View at Google Scholar · View at Scopus
  140. F. Mi, X. Chen, Y. Ma, S. Yin, F. Yuan, and H. Zhang, “Facile synthesis of hierarchical core-shell Fe3O4@MgAl–LDH@Au as magnetically recyclable catalysts for catalytic oxidation of alcohols,” Chemical Communications, vol. 47, no. 48, pp. 12804–12806, 2011. View at Publisher · View at Google Scholar · View at Scopus
  141. Y. Ma, B. Yue, L. Yu et al., “Artificial construction of the magnetically separable nanocatalyst by anchoring Pt nanoparticles on functionalized carbon-encapsulated nickel nanoparticles,” Journal of Physical Chemistry C, vol. 112, no. 2, pp. 472–475, 2008. View at Publisher · View at Google Scholar · View at Scopus
  142. M. J. Jacinto, R. Landers, and L. M. Rossi, “Preparation of supported Pt(0) nanoparticles as efficient recyclable catalysts for hydrogenation of alkenes and ketones,” Catalysis Communications, vol. 10, no. 15, pp. 1971–1974, 2009. View at Publisher · View at Google Scholar · View at Scopus
  143. J. C. Park, J. U. Bang, J. Lee, C. H. Ko, and H. Song, “Ni@SiO2 yolk-shell nanoreactor catalysts: high temperature stability and recyclability,” Journal of Materials Chemistry, vol. 20, no. 7, pp. 1239–1246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  144. J. C. Park and H. Song, “Metal@silica yolk-shell nanostructures as versatile bifunctional nanocatalysts,” Nano Research, vol. 4, no. 1, pp. 33–49, 2011. View at Publisher · View at Google Scholar · View at Scopus
  145. Y. Le, F. Mehmood, S. Lee et al., “Increased silver activity for direct propylene epoxidation via subnanometer size effects,” Science, vol. 328, no. 5975, pp. 224–228, 2010. View at Publisher · View at Google Scholar · View at Scopus
  146. R. Coons and V. Valk, “Refinery catalysts: suppliers tap emerging markets,” Chemical Week, vol. 173, pp. 19–23, 2011.
  147. J.-Y. Wang, M.-J. Yen, K.-C. Ho et al., “Fabrication of nanocatalyst-enhanced enzyme electrode and application in glucose biofuel cells,” in Proceedings of the 4th IEEE International Nanoelectronics Conference (INEC '11), pp. 1–2, Taoyuan, Taiwan, June 2011. View at Publisher · View at Google Scholar · View at Scopus
  148. L. Yuan, H. Wang, Q. Yu, Z. Wu, J. L. Brash, and H. Chen, “‘Nano-catalyst’ for DNA transformation,” Journal of Materials Chemistry, vol. 21, no. 17, pp. 6148–6151, 2011. View at Publisher · View at Google Scholar · View at Scopus
  149. K. Tedsree, T. Li, S. Jones et al., “Hydrogen production from formic acid decomposition at room temperature using a Ag–Pd core-shell nanocatalyst,” Nature Nanotechnology, vol. 6, no. 5, pp. 302–307, 2011. View at Publisher · View at Google Scholar · View at Scopus
  150. G. R. Meseck, R. Kontic, G. R. Patzke, and S. Seeger, “Photocatalytic composites of silicone nanofilaments and TiO2 nanoparticles,” Advanced Functional Materials, vol. 22, no. 21, pp. 4433–4438, 2012. View at Publisher · View at Google Scholar
  151. D. R. Hristozov, S. Gottardo, A. Critto, and A. Marcomini, “Risk assessment of engineered nanomaterials: a review of available data and approaches from a regulatory perspective,” Nanotoxicology, vol. 6, no. 8, pp. 880–898, 2012. View at Publisher · View at Google Scholar
  152. I. D. Rastogi, “Nanotechnology: safety paradigms,” Journal of Toxicology and Environmental Health Sciences, vol. 4, no. 1, pp. 1–12, 2012.
  153. C. Buzea, I. I. Pacheco, and K. Robbie, “Nanomaterials and nanoparticles: sources and toxicity,” Biointerphases, vol. 2, no. 4, pp. MR17–MR71, 2007. View at Publisher · View at Google Scholar
  154. F. van Broekhuizen and P. van Broekhuizen, Nano-Products in the European Construction Industry, IVAM UvA BV, Amsterdam, The Netherlands, 2009.
  155. R. J. Aitken, S. M. Hankin, B. Ross, C. L. Tran, and V. Stone, “EMERGNANO: a review of completed and near completed environment, health and safety research on nanomaterials and nanotechnology,” 2009, http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&ProjectID=16006.
  156. I. Linkov, J. Steevens, G. Adlakha-Hutcheon et al., “Emerging methods and tools for environmental risk assessment, decision-making, and policy for nanomaterials: summary of NATO Advanced Research Workshop,” Journal of Nanoparticle Research, vol. 11, no. 3, pp. 513–527, 2009. View at Publisher · View at Google Scholar · View at Scopus
  157. R. Brayner, “The toxicological impact of nanoparticles,” Nano Today, vol. 3, no. 1-2, pp. 48–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  158. B. Zhou, S. Parasher, M. Rueter, and Z. Wu, “Organically complexed nanocatalysts for improving combustion properties of fuels and fuel compositions incorporating such catalysts,” US patent no. 7803201, Headwaters Technology Innovation, LLC, Lawrenceville, NJ, USA, 2005.
  159. T. T. R. Shimazu, H. Sobukawa, Y. Seno, and Y. Hasegawa, “Metal oxide nanoporous material, coating compostition to obtain the same, and methods of manufacturing them,” US patent no. 7935653, Toyota Co., Toyota City, Japan, 2005.
  160. D. Yoo, C. Pak, and S. Lee, “Supported catalyst, electrode using the supported catalyst and fuel cell including the electrode,” US patent no. 7589043, Samsung SDI Co., Ltd., Yongin-Gun, Republic of Korea, 2006.
  161. Z. Shan, J. C. Jansen, C. Y. Yeh, P. J. Angevine, T. Maschmeyer, and M. S. Hamdy, “Mesoporous material with active metals,” US patent no. 7663011, Lummus Technology Inc., Bloomfield, NJ, USA, 2010.
  162. W. A. Wachter, S. J. McCarthy, J. S. Beck, and D. L. Stern, “FCC process using mesoporous catalyst,” US patent no. 7504021, ExxonMobil, Irving, Tex, USA, 2009.
  163. A. Harutyunyan, T. Tokune, and E. M. Fernandez, “Catalyst for synthesis of carbon single-walled nanotubes,” US patent no. 7485600, Honda Motor Co., Ltd., Tokyo, Japan, 2005.
  164. D. Heineke, M. Baier, D. Demuth, and K. Harth, “Preparation of olefins, particularly of propylene, by dihydrogenation,” US patent no. 6989346, BASF AG, Ludwigshafen, Germany, 2003.
  165. I. Schmidt, C. H. Christensen, C. Christensen, and K. Johannsen, “Process for catalytic alkylation of monocyclic aromatic compounds and composition for use therein,” US patent no. 7285696, Haldor Topsoe A/S, Lynge, Denmark, 2004.
  166. J. Wang, X. Hao, J. Jia, and J. W. Woo, “Method of producing multi-component catalysts,” US patent no. 7381683, NanoStellar, Inc., Redwood City, Calif, USA, 2006.
  167. The Freedonia Group, Inc., “World catalysts to 2014—market research, market share, market size, sales, demand forecast, market leaders, company profiles, industry trends,” 2011, http://www.freedoniagroup.com/World-Catalysts.html.
  168. Global Industry Analysts, Inc., “Nanocatalysts—a global market report,” 2009, http://www.strategyr.com/Nanocatalysts_Market_Report.asp.
  169. Headwaters Inc., “Headwaters incorporated announces successful commercial implementation of the HCAT heavy oil upgrading technology at the neste oil porvoo refinery,” 2011, http://www.headwaters.com/data/upfiles/pressreleases/1.18.11HCATCommercialImplementation.pdf.
  170. Headwaters Inc., “HCAT Technology,” 2005, http://www.headwaters.com/data/upfiles/download/HW_HTI.pdf.
  171. Headwaters Inc., “Headwaters nanokinetix,” 2004, http://www.htigrp.com/nano.asp.
  172. BASF AG, “Endurance—fluid catalytic cracking catalyst,” 2012, http://www.basf.com/group/corporate/en/brand/ENDURANCE.
  173. Haldor Topsoe A/S, “LK-853 FENCE new low temperature shift catalyst,” 2012, http://www.topsoe.com/news/News/2012/~/media/PDF%20files/Ammonia/topsoe_lk853_fence_new_lts_cat.ashx.
  174. Haldor Topsoe A/S, “TK-575 BRIM NiMo catalyst for production of ULSD,” 2006, http://www.topsoe.com/business_areas/refining/Hydrotreating/~/media/PDF%20files/Refining/Topsoe_TK-575_BRIM.ashx.
  175. QuantumsSphere Inc., Products: nanomaterials, 2012, http://www.qsinano.com/.
  176. QuantumsSphere Inc., “QSI-nano copper product profile,” 2009, http://www.qsinano.com/new/qsi_nano_copper_cu_5_oct_09.pdf.
  177. nGimat Co., “Materials for fuels,” 2008, http://www.ngimat.com/pdfs/Materials_for_Fuels.pdf.
  178. Molecular Nanosystems, “Science & technology: chemical vapor deposition,” 2010, http://www.monano.com/sciencecore.htm.
  179. TurboBeads, Products, n.d., http://www.turbobeads.com/?id=8.