About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2014 (2014), Article ID 390834, 15 pages
Research Article

Study of the Thermal Decomposition of PFPEs Lubricants on a Thin DLC Film Using Finitely Extensible Nonlinear Elastic Potential Based Molecular Dynamics Simulation

1Division of Mechanical and Automotive Engineering, Kongju National University, Republic of Korea
2School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798
3Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

Received 30 December 2013; Revised 20 April 2014; Accepted 14 May 2014; Published 6 July 2014

Academic Editor: S. N. Piramanayagam

Copyright © 2014 S. K. Deb Nath and C. H. Wong. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Perfluoropolyethers (PFPEs) are widely used as hard disk lubricants for protecting carbon overcoat reducing friction between the hard disk interface and the head during the movement of head during reading and writing data in the hard disk. Due to temperature rise of PFPE Zdol lubricant molecules on a DLC surface, how polar end groups are detached from lubricant molecules during coating is described considering the effect of temperatures on the bond/break density of PFPE Zdol using the coarse-grained bead spring model based on finitely extensible nonlinear elastic potential. As PFPE Z contains no polar end groups, effects of temperature on the bond/break density (number of broken bonds/total number of bonds) are not so significant like PFPE Zdol. Effects of temperature on the bond/break density of PFPE Z on DLC surface are also discussed with the help of graphical results. How bond/break phenomenonaffects the end bead density of PFPE Z and PFPE Zdol on DLC surface is discussed elaborately. How the overall bond length of PFPE Zdol increases with the increase of temperature which is responsible for its decomposition is discussed with the help of graphical results. At HAMR condition, as PFPE Z and PFPE Zdol are not suitable lubricant on a hard disk surface, it needs more investigations to obtain suitable lubricant. We study the effect of breaking of bonds of nonfunctional lubricant PFPE Z, functional lubricants such as PFPE Zdol and PFPE Ztetrao, and multidented functional lubricants such as ARJ-DS, ARJ-DD, and OHJ-DS on a DLC substrate with the increase of temperature when heating of all of the lubricants on a DLC substrate is carried out isothermally using the coarse-grained bead spring model by molecular dynamics simulations and suitable lubricant is selected which is suitable on a DLC substrate at high temperature.