About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2014 (2014), Article ID 398569, 14 pages
http://dx.doi.org/10.1155/2014/398569
Review Article

Application of Iron Oxide Nanomaterials for the Removal of Heavy Metals

1Department of Chemistry, Krantiguru Shyamji Krishna Verma Kachchh University, Mundra Road, Bhuj, Gujarat 370 001, India
2Chemical Engineering Department, Government Engineering College, Bhuj, Gujarat 370 001, India

Received 15 July 2013; Revised 24 December 2013; Accepted 1 January 2014; Published 19 February 2014

Academic Editor: Bobby G. Sumpter

Copyright © 2014 Pragnesh N. Dave and Lakhan V. Chopda. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. P. Schwarzenbach, T. Egli, T. B. Hofstetter, U. Von Gunten, and B. Wehrli, “Global water pollution and human health,” Annual Review of Environment and Resources, vol. 35, pp. 109–136, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Fujita, Y. lde, D. Sato et al., “Heavy metal contamination of coastal lagoon sediments: fongafale islet, Funafuti atoll, tuvalu,” Chemosphere, vol. 95, pp. 628–634, 2014.
  3. S. K. Al-Musharsfi, I. Y. Mahmoud, and S. N. Al-Bahry, “Heavy metal pollution from treated sewage effluent,” APCBEE Procedia, vol. 5, pp. 344–348, 2013.
  4. H. A. Naser, “Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf, a review,” Marine Pollution Bulletin, vol. 72, no. 1, pp. 6–13, 2013.
  5. G. Akinci, D. E. Guven, and S. K. Ugurlu, “Assessing pollution in Izmir Bay from rivers in western Turkey: heavy metals,” Environmental Science, vol. 15, no. 12, pp. 2252–2262, 2013.
  6. F. Zan, S. Huo, B. Xi et al., “A 100 year sedimentary record of heavy metal pollution in a shallow eutrophic lake, Lake Chaohu, China,” Journal of Environmental Monitoring, vol. 13, no. 10, pp. 2788–2797, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. S.-L. Wang, X.-R. Xu, Y.-X. Sun, J.-L. Liu, and H.-B. Li, “Heavy metal pollution in coastal of South China: a review,” Marine Pollution Bulletin, vol. 76, no. 1-2, pp. 7–15, 2013.
  8. Z. Li, Z. Ma, T. J. D. Kuijp, Z. Yuan, and L. Huang, “A review of soil heavy metal pollution from mines in China: pollution and health risk assessment,” Science of The Total Environment, vol. 468-469, pp. 843–853, 2014.
  9. S. S. Gowd, M. R. Reddy, and P. K. Govil, “Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India,” Journal of Hazardous Materials, vol. 174, no. 1–3, pp. 113–121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. P. C. Deshpande, A. K. Tilwankar, and S. R. Asolekar, “A novel approach to estimating potential maximum exposure to ship recycling yard workers in Alang,” Science of the Total Environment, vol. 438, pp. 304–311, 2012.
  11. F. Fu and Q. Wang, “Removal of heavy metal ions from wastewaters: a review,” Journal of Environmental Management, vol. 92, no. 3, pp. 407–418, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. Hashim, S. Mukhopadhyay, J. N. Sahu, and B. Sengupta, “Remediation technologies for heavy metal contaminated groundwater,” Journal of Environmental Management, vol. 92, no. 10, pp. 2355–2388, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Zhang and M. Fang, “Nanomaterials in pollution trace detection and environmental improvement,” Nano Today, vol. 5, no. 2, pp. 128–142, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, and Q. Zhang, “Heavy metal removal from water/wastewater by nanosized metal oxides: a review,” Journal of Hazardous Materials, vol. 211-212, pp. 317–331, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. B. I. Kharisov, H. V. R. Dias, O. V. Kharissova, V. M. Jiménez-Pérez, B. O. Pérez, and B. M. Flores, “Iron-contain nanomaterial: synthesis, properties, and environmental applications,” RSC Advances, vol. 2, no. 25, pp. 9325–9358. View at Publisher · View at Google Scholar
  16. Z. Feng, S. Zhu, D. R. M. De Godoi, A. C. S. Samia, and D. Scherson, “Adsorption of Cd2+ on carboxyl-terminated superparamagnetic iron oxide nanoparticles,” Analytical Chemistry, vol. 84, no. 8, pp. 3764–3770, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Xu, G. M. Zeng, D. L. Huang et al., “Use of iron oxide nanomaterials in wastewater treatment: a review,” Science of the Total Environment, vol. 424, pp. 1–10, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. C. L. Warner, W. Chouyyok, K. E. Mackie et al., “Manganese doping of magnetic iron oxide nanoparticles: tailoring surface reactivity for a regenerable heavy metal sorbent,” Langmuir, vol. 28, no. 8, pp. 3931–3937, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. A. E. Karatapanis, D. E. Petrakis, and C. D. Stalikas, “A layered magnetic iron/iron oxide nanoscavenger for the analytical enrichment of ng-L-1 concentration levels of heavy metals from water,” Analytica Chimica Acta, vol. 726, pp. 22–27, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Yang, Z. Tian, J. Wang, and S. Yang, “A magnetic resonance imaging nanosensor for Hg (II) based on thymidine-functionalized supermagnetic iron oxide nanoparticles,” Sensors and Actuators B, vol. 161, no. 1, pp. 429–433, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. A. S. Teja and P.-Y. Koh, “Synthesis, properties, and applications of magnetic iron oxide nanoparticles,” Progress in Crystal Growth and Characterization of Materials, vol. 55, no. 1-2, pp. 22–45, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. Liu, H. Wang, C. Liu et al., “Magnetic cellulose-chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions,” Chemical Communications, vol. 48, no. 59, pp. 7350–7352, 2012.
  23. J. K. Oh and J. M. Park, “Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application,” Progress in Polymer Science, vol. 36, no. 1, pp. 168–189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Laurent, D. Forge, M. Port et al., “Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications,” Chemical Reviews, vol. 108, no. 6, pp. 2064–2110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. L. H. Reddy, J. L. Arias, J. Nicolas, and P. Couvreur, “Magnetic nanoparticles: design and characterization, toxicity and biocompatibility,pharmaceutical and biomedical applications,” Chemical Reviews, vol. 112, no. 11, pp. 5818–5878, 2012. View at Publisher · View at Google Scholar
  26. M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen, “Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy,” Advanced Drug Delivery Reviews, vol. 63, no. 1-2, pp. 24–46, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Petcharoen and A. Sirivat, “Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method,” Materials Science and Engineering B, vol. 177, no. 5, pp. 421–427, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Hyeon, S. S. Lee, J. Park, Y. Chung, and B. N. Hyon, “Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process,” Journal of the American Chemical Society, vol. 123, no. 51, pp. 12798–12801, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Belaid, S. Laurent, M. Vermeersch, L. V. Elst, D. P. Morga, and R. N. Muller, “A new approach to follow the formation of iron oxide nanoparticles synthesized by thermal decomposition,” Nanotechnology, vol. 24, no. 5. View at Publisher · View at Google Scholar
  30. Y.-H. Zheng, Y. Cheng, F. Bao, and Y.-S. Wang, “Synthesis and magnetic properties of Fe3O4 nanoparticles,” Materials Research Bulletin, vol. 41, no. 3, pp. 525–529, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Behdadfar, A. Kermanpur, H. Sadeghi-Aliabadi, M. D. P. Morales, and M. Mozaffari, “Synthesis of high intrinsic loss power aqueous ferrofluids of iron oxide nanoparticles by citric acid-assisted hydrothermal-reduction route,” Journal of Solid State Chemistry, vol. 187, pp. 20–26, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Cai, X. An, J. Cui et al., “Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticlesfor biomedical applications,” ACS Applied Materials & Interfaces, vol. 5, no. 5, pp. 1722–1731, 2013.
  33. S. Cui, X. Shen, and B. Lin, “Surface organic modification of Fe3O4 nanoparticles by silane-coupling agents,” Rare Metals, vol. 25, no. 6, pp. 426–430, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Mohammad-Beigi, S. Yaghmaei, R. Roostaazad, H. Bardania, and A. Arpanaei, “Effect of pH, citrate treatment and silane-coupling agent concentration on the magnetic, structural and surface properties of functionalized silica-coated iron oxide nanocomposite particles,” Physica E, vol. 44, no. 3, pp. 618–627, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, and R. Kumar, “Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites,” Progress in Polymer Science, vol. 38, no. 8, pp. 1232–1261, 20.
  36. C. Barrera, A. P. Herrera, N. Bezares et al., “Effect of poly(ethylene oxide)-silane graft molecular weight on the colloidal properties of iron oxide nanoparticles for biomedical applications,” Journal of Colloid and Interface Science, vol. 377, no. 1, pp. 40–50, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. E. K. U. Larsen, T. Nielsen, T. Wittenborn et al., “Size-dependent accumulation of pegylated silane-coated magnetic iron oxide nanoparticles in murine tumors,” ACS Nano, vol. 3, no. 7, pp. 1947–1951, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. F. . Ahangaran, A. Hassanzadeh, and S. Nouril, “Surface modification of Fe3O4@SiO2 microsphere by silane coupling agent,” International Nano Letters, vol. 233, no. 23, pp. 1–5.
  39. D. Forge, S. Laurent, Y. Gossuin, A. Roch, L. Vander Elst, and R. N. Muller, “An original route to stabilize and functionalize magnetite nanoparticles for theranosis applications,” Journal of Magnetism and Magnetic Materials, vol. 323, no. 5, pp. 410–415, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. J. I. Cutler, D. Zheng, X. Xu, D. A. Giljohann, and C. A. Mirkin, “Polyvalent oligonucleotide iron oxide nanoparticle “click” conjugates,” Nano Letters, vol. 10, no. 4, pp. 1477–1480, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Huang, K. G. Neoh, and E.-T. Kang, “Combined ATRP and 'click' chemistry for designing stable tumor-targeting superparamagnetic iron oxide nanoparticles,” Langmuir, vol. 28, no. 1, pp. 563–571, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Huang, K. G. Neoh, and E.-T. Kang, “Combined ATRP and 'click' chemistry for designing stable tumor-targeting superparamagnetic iron oxide nanoparticles,” Langmuir, vol. 28, no. 1, pp. 563–571, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Huang, K. G. Neoh, L. Xu, E. T. Kang, and E. Chiong, “Polymeric nanoparticles with encapsulated superparamagnetic iron oxide and conjugated cisplatin for potential bladder cancer therapy,” Biomacromolecules, vol. 13, no. 8, pp. 2513–2520, 2012.
  44. L. Wang, K. G. Neoh, E. T. kang, and B. Shuter, “Methotrexate-conjugated and hyperbranched polyglycerol-grafted Fe3O4 magnetic nanoparticles for targeted anticancer effects,” European Journal of Pharmaceutical Sciences, vol. 48, no. 1-2, pp. 111–120, 2013.
  45. J. Vidal-Vidal, J. Rivas, and M. A. López-Quintela, “Synthesis of monodisperse maghemite nanoparticles by the microemulsion method,” Colloids and Surfaces A, vol. 288, no. 1–3, pp. 44–51, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. A. B. Chin and I. I. Yaacob, “Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart's procedure,” Journal of Materials Processing Technology, vol. 191, no. 1–3, pp. 235–237, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. L.-H. Han, H. Liu, and Y. Wei, “In situ synthesis of hematite nanoparticles using a low-temperature microemulsion method,” Powder Technology, vol. 207, no. 1–3, pp. 42–46, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. R. J. Joseyphus, D. Kodama, T. Matsumoto, Y. Sato, B. Jeyadevan, and K. Tohji, “Role of polyol in the synthesis of Fe particles,” Journal of Magnetism and Magnetic Materials, vol. 310, no. 2, pp. 2393–2395, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. W. Cai and J. Wan, “Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols,” Journal of Colloid and Interface Science, vol. 305, no. 2, pp. 366–370, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Abbas, B. P. Rao, S. M. Naga, M. Takahashi, and C. G. Kim, “Synthesis of high magnetization hydrophilic magnetite (Fe3O4) nanoparticles in single reaction-surfactntless polyol process,” Ceramics International, vol. 39, no. 7, pp. 7605–7611, 2013.
  51. R. Abu Mukh-Qasem and A. Gedanken, “Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles,” Journal of Colloid and Interface Science, vol. 284, no. 2, pp. 489–494, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. S.-J. Park, S. Kim, S. Lee, Z. G. Khim, K. Char, and T. Hyeon, “Synthesis and magnetic studies of uniform iron nanorods and nanospheres,” Journal of the American Chemical Society, vol. 122, no. 35, pp. 8581–8582, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. E. H. Kim, H. S. Lee, B. K. Kwak, and B.-K. Kim, “Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent,” Journal of Magnetism and Magnetic Materials, vol. 289, pp. 328–330, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. B. M. Kumfer, K. Shinoda, B. Jeyadevan, and I. M. Kennedy, “Gas-phase flame synthesis and properties of magnetic iron oxide nanoparticles with reduced oxidation state,” Journal of Aerosol Science, vol. 41, no. 3, pp. 257–265, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Li, Y. Hu, G. Huang, and C. Li, “Metallic iron nanoparticles: flame synthesis, characterization and magnetic properties,” Particuology, vol. 11, no. 4, pp. 460–467, 2013.
  56. R. W. Saunders and J. M. C. Plane, “The formation and growth of Fe2O3 nanoparticles from the photo-oxidation of iron pentacarbonyl,” Journal of Aerosol Science, vol. 41, no. 5, pp. 475–489, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Cui, Y. Liu, and W. Ren, “Structure switch between α-Fe2O3,γ- Fe2O3 and Fe3O4 during the large scale and low temperature sol-gel synthesis of nearly monodispersed iron oxide nanoparticles,” Advanced Powder Technology, vol. 24, no. 1, pp. 93–97, 2013.
  58. R. F. C. Marques, C. Garcia, P. Lecante et al., “Electro-precipitation of Fe3O4 nanoparticles in ethanol,” Journal of Magnetism and Magnetic Materials, vol. 320, no. 19, pp. 2311–2315, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. L. Cabrera, S. Gutierrez, N. Menendez, M. P. Morales, and P. Herrasti, “Magnetite nanoparticles: electrochemical synthesis and characterization,” Electrochimica Acta, vol. 53, no. 8, pp. 3436–3441, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. F. Fajaroh, H. Setyawan, W. Widiyastuti, and S. Winardi, “Synthesis of magnetite nanoparticles by surfactant-free electrochemical method in an aqueous system,” Advanced Powder Technology, vol. 23, no. 3, pp. 328–333, 2012.
  61. S. Lin, D. Lu, and Z. Lu, “Removal of arsenic contaminants with magnetic γ-Fe2O3 nanoparticles,” Chemical Engineering, vol. 211-212, pp. 46–52, 2012.
  62. S. Luther, N. Borgfeld, J. Kim, and J. G. Parsons, “Removal of arsenic from aqueous solution: a study of the effects of pH and interfering ions using iron oxide nanomaterials,” Microchemical Journal, vol. 101, pp. 30–36, 2012. View at Publisher · View at Google Scholar · View at Scopus
  63. W. Tang, Q. Li, S. Gao, and J. K. Shang, “Arsenic (III,V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method,” Journal of Hazardous Materials, vol. 192, no. 1, pp. 131–138, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Kilianova, R. Prucek, J. Filip et al., “Remarkable efficiency of ultrafine superparamagnetic iron (III) oxide nanoparticles toward arsenate removal from aqueous environment,” Chemosphere, vol. 93, no. 11, pp. 2690–2697, 2013.
  65. K. Song, W. Kim, C.-Y. Suh, D. Shin, K.-S. Ko, and K. Ha, “Magnetic iron oxide nanoparticles prepared by electrical wire explosion for arsenic removal,” Powder Technology, vol. 246, pp. 572–574, 2013.
  66. M. Kokate, K. Garadkar, and A. Gole, “One pot synthesis of magnetite -silica nanocomposites: applications as tags, entrapment matrix and in water purification,” Journal of Materials Chemistry A, vol. 1, no. 6, pp. 2022–2029, 2013.
  67. S. Zhang, H. Niu, Y. Cai, X. Zhao, and Y. Shi, “Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4,” Chemical Engineering Journal, vol. 158, no. 3, pp. 599–607, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. V. Chandra, J. Park, Y. Chun, J. W. Lee, I.-C. Hwang, and K. S. Kim, “Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal,” ACS Nano, vol. 4, no. 7, pp. 3979–3986, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. I. F. Nata, M. Sureshkumar, and C.-K. Lee, “One-pot preparation of amine-rich magnetite/bacterial cellulose nanocomposite and its application for arsenate removal,” RSC Advances, vol. 1, no. 4, pp. 625–631, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. Z. Wu, W. Li, P. A. Webley, and D. Zhao, “General and controllable synthesis of novel mesoporous magnetic iron oxide@carbon encapsulates for efficient arsenic removal,” Advanced Materials, vol. 24, no. 4, pp. 485–491, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. R. M. Dhoble, S. Lunge, A. G. Bhole, and S. Rayalu, “Magnetic binary oxide particles (MBOP): a promising adsorbent for removal of As (III) in water,” Water Research, vol. 45, no. 16, pp. 4769–4781, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. Y. Tian, M. Wu, X. Lin, P. Huang, and Y. Huang, “Synthesis of magnetic wheat straw for arsenic adsorption,” Journal of Hazardous Materials, vol. 193, pp. 10–16, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Ma, Z. Zhu, B. Chen et al., “One -pot, large -scale synthesis of magnetic activated carbon nanotubes and their applications for arsenic removal,” Journal of Materials Chemistry A, vol. 1, no. 15, pp. 4662–4666, 2013.
  74. B. K. Mandal and K. T. Suzuki, “Arsenic round the world: a review,” Talanta, vol. 58, no. 1, pp. 201–235, 2002. View at Publisher · View at Google Scholar · View at Scopus
  75. B. An, Q. Liang, and D. Zhao, “Removal of arsenic(V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles,” Water Research, vol. 45, no. 5, pp. 1961–1972, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. Arsenic in drinking water, http://water.epa.gov/lawsregs/rulesregs/sdwa/arsenic/index.cfm.
  77. W. Yang, A. T. Kan, W. Chen, and M. B. Tomson, “PH-dependent effect of zinc on arsenic adsorption to magnetite nanoparticles,” Water Research, vol. 44, no. 19, pp. 5693–5701, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. C. T. Yavuz, J. T. Mayo, C. Suchecki et al., “Pollution magnet: nano-magnetite for arsenic removal from drinking water,” Environmental Geochemistry and Health, vol. 32, no. 4, pp. 327–334, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. Y. Jeong, M. Fan, S. Singh, C.-L. Chuang, B. Saha, and J. Hans van Leeuwen, “Evaluation of iron oxide and aluminum oxide as potential arsenic(V) adsorbents,” Chemical Engineering and Processing, vol. 46, no. 10, pp. 1030–1039, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. L. Feng, M. Cao, X. Ma, Y. Zhu, and C. Hu, “Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal,” Journal of Hazardous Materials, vol. 217-218, pp. 439–446, 2012. View at Publisher · View at Google Scholar · View at Scopus
  81. X. Yu, S. Tong, M. Ge, J. Zuo, C. Cao, and W. Song, “One-step synthesis of magnetic composites of cellulose@iron oxide nanaparticles for arsenic removal,” Journal of Materials Chemistry A, vol. 1, no. 3, pp. 959–965, 2013.
  82. R. Chalasani and S. Vasudevan, “Cyclodextrin functionalized magnetic iron oxide nanocrystal: a host -carrier for magnetic separation of non -polar molecules and arsenic from aqueous media,” Journal of Materials Chemistry, vol. 22, pp. 14925–14931, 2012. View at Publisher · View at Google Scholar
  83. F. Mou, J. Guan, Z. Xiao, Z. Sun, W. Shi, and X.-A. Fan, “Solvent-mediated synthesis of magnetic Fe2O3 chestnut-like amorphous-core/γ-phase-shell hierarchical nanostructures with strong As(v) removal capability,” Journal of Materials Chemistry, vol. 21, no. 14, pp. 5414–5421, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. Y.-M. Hao, C. Man, and Z.-B. Hu, “Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles,” Journal of Hazardous Materials, vol. 184, no. 1–3, pp. 392–399, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. H. Li, D.-L. Xiao, H. He, R. Lin, and P.-L. Zuo, “Adsorption behavior and adsorption mechanism of Cu (II) ions on amino-functionalized magnetic nanoparticles,” Transactions of Nonferrous Metals Society of China, vol. 23, no. 9, pp. 2657–2665, 2013.
  86. S. S. Banerjee and D.-H. Chen, “Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent,” Journal of Hazardous Materials, vol. 147, no. 3, pp. 792–799, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. Y.-T. Zhou, H.-L. Nie, C. Branford-White, Z.-Y. He, and L.-M. Zhu, “Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid,” Journal of Colloid and Interface Science, vol. 330, no. 1, pp. 29–37, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. Y.-C. Chang and D.-H. Chen, “Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions,” Journal of Colloid and Interface Science, vol. 283, no. 2, pp. 446–451, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. H. Yan, L. Yang, Z. Yang, H. Yang, A. Li, and R. Cheng, “Preparation of chitosan/poly (acrylic acid) magnetic composite microspheres and applications in the removal of copper (II) ions from aqueous solutions,” Journal of Hazardous Materials, vol. 229-230, pp. 371–380, 2012.
  90. J.-Y. Tseng, C.-Y. Chang, C.-F. Chang et al., “Kinetics and equilibrium of desorption removal of copper from magnetic polymer adsorbent,” Journal of Hazardous Materials, vol. 171, no. 1–3, pp. 370–377, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Z. M. Badruddoza, A. S. H. Tay, P. Y. Tan, K. Hidajat, and M. S. Uddin, “Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies,” Journal of Hazardous Materials, vol. 185, no. 2-3, pp. 1177–1186, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Zhu, S. Wei, H. Gu et al., “One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal,” Environmental Science and Technology, vol. 46, no. 2, pp. 977–985, 2012. View at Publisher · View at Google Scholar · View at Scopus
  93. P. Yuan, M. Fan, D. Yang et al., “Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions,” Journal of Hazardous Materials, vol. 166, no. 2-3, pp. 821–829, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. G. López-Téllez, C. E. Barrera-Díaz, P. Balderas-Hernández, G. Roa-Morales, and B. Bilyeu, “Removal of hexavalent chromium in aquatic solutions by iron nanoparticles embedded in orange peel pith,” Chemical Engineering Journal, vol. 173, no. 2, pp. 480–485, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. Y. Wang, B. Zou, T. Gao, X. Wu, S. Lou, and S. Zhou, “Synthesis of orange-like Fe3O4/PPy composite microspheres and their excellent Cr(VI) ion removal properties,” Journal of Materials Chemistry, vol. 22, no. 18, pp. 9034–9040, 2012. View at Publisher · View at Google Scholar · View at Scopus
  96. N. N. Nassar, “Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents,” Journal of Hazardous Materials, vol. 184, no. 1–3, pp. 538–546, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. Z. Cheng, A. L. KuanTan, Y. Tao, D. Shan, K. E. Ting, and X. J. Yin, “Synthesis and characterization of iron Oxide nanoparticles and applications in the removal of heavy Metals from industrial wastewater,” International Journal of Photoenergy, vol. 2012, pp. 1–5, 2012.
  98. P. Xu, G. M. Zeng, D. L. Huang et al., “Adsorption of Pb (II) by iron oxide nanoparticles immobilized phanerochaete chrysosporium: equilibrium, kinetic, thermodynamic and mechanisms analysis,” Chemical Engineering Journal, vol. 203, pp. 423–431, 2012.
  99. T. Madrakian, A. Afkhami, and M. Ahmadi, “Simple in situ functionalizing magnetite nanoparticles by reactive blue-19 and their application to the effective removal of Pb2+ ions from water samples,” Chemosphere, vol. 90, no. 2, pp. 542–547, 2013. View at Publisher · View at Google Scholar
  100. L. Wang, J. Li, Q. Jiang, and L. Zhao, “Water-soluble Fe3O4 nanoparticles with high solubility for removal of heavy-metal ions from waste water,” Dalton Transactions, vol. 41, no. 15, pp. 4544–4551, 2012.
  101. C.-Y. Cao, J. Qu, W.-S. Yan, J.-F. Zhu, Z.-Y. Wu, and W.-G. Song, “Low-cost synthesis of flowerlike α-Fe2O3 nanostructures for heavy metal ion removal: adsorption property and mechanism,” Langmuir, vol. 28, no. 9, pp. 4573–4579, 2012. View at Publisher · View at Google Scholar · View at Scopus
  102. Z. Wei, R. Xing, X. Zhang, S. Liu, H. Yu, and P. Li, “Facile template-free fabrication of hollow nestlike α-Fe2O3 nanostructures for water treatment,” ACS Applied Materials & Interfaces, vol. 5, no. 3, pp. 598–604, 2013.
  103. A. Roy and J. Bhattacharya, “Removal of Cu (II), Zn (II) and Pb (II) from water using microwave-assisted synthesized maghemite nanotubes,” Chemical Engineering Journal, vol. 211-212, pp. 493–500, 2012.
  104. C. Zhang, J. Sui, J. Li, Y. Tang, and W. Cai, “Efficient removal of heavy metal ions by thiol-functionalized super magnetic carbon nanotubes,” Chemical Engineering Journal, vol. 210, pp. 45–52, 2012.
  105. H. Parham, B. Zargar, and R. Shiralipour, “Fast and efficient removal of mercury from water samples using magnetic iron oxide nanoparticles modified with 2-mercaptobenzothiazole,” Journal of Hazardous Materials, vol. 205-206, pp. 94–100, 2012. View at Publisher · View at Google Scholar · View at Scopus
  106. X. Xin, Q. Wei, J. Yang et al., “Highly efficient removal of heavy metal ions by amine-functionalized mesoporous Fe3O4 nanoparticles,” Chemical Engineering Journal, vol. 184, pp. 132–140, 2012. View at Publisher · View at Google Scholar · View at Scopus
  107. F. Ge, M.-M. Li, H. Ye, and B.-X. Zhao, “Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles,” Journal of Hazardous Materials, vol. 211-212, pp. 366–372, 2012. View at Publisher · View at Google Scholar · View at Scopus
  108. J.-F. Liu, Z.-S. Zhao, and G.-B. Jiang, “Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water,” Environmental Science and Technology, vol. 42, no. 18, pp. 6949–6954, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. S. Singh, K. C. Barick, and D. Bahadur, “Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens,” Journal of Hazardous Materials, vol. 192, no. 3, pp. 1539–1547, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Z. M. Badruddoza, Z. B. Shawon, W. J. Tay, K. Hidajat, and M. S. Uddin, “Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals from industrial wastewater,” Carbohydrate Polymers, vol. 91, no. 1, pp. 322–332, 2013. View at Publisher · View at Google Scholar
  111. J. Gong, L. Chen, G. Zeng et al., “Shellac-coated ironoxide nanaparticles for removal of cadmium (II) ions from aqueous solution,” Journal of Environmental Sciences, vol. 24, no. 7, pp. 1165–1173, 2012.
  112. W. Yantasee, C. L. Warner, T. Sangvanich et al., “Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles,” Environmental Science and Technology, vol. 41, no. 14, pp. 5114–5119, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. Y. Tan, M. Chen, and Y. Hao, “High efficient removal of Pb (II) by amino-functionalized Fe3O4 magnetic nano-particles,” Chemical Engineering Journal, vol. 191, pp. 104–111, 2012. View at Publisher · View at Google Scholar · View at Scopus
  114. Y. F. Shen, J. Tang, Z. H. Nie, Y. D. Wang, Y. Ren, and L. Zuo, “Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification,” Separation and Purification Technology, vol. 68, no. 3, pp. 312–319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. F. Zhang, Z. Zhu, Z. Dong et al., “Magnetically recoverable facile nanomaterials: synthesis, characterization and application in remediation of heavy metals,” Microchemical Journal, vol. 98, no. 2, pp. 328–333, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. A. Farrukh, A. Akram, A. Ghaffar et al., “Design of polymer-brush grafted magnetic nanaparticles for highly efficient water remediation,” Mater Interfaces, vol. 5, no. 9, pp. 3784–3793, 2013.
  117. S. Yang, Z. Guo, G. Sheng, and X. Wang, “Application of novel plasma-induced CD/MWCNT/ iron oxide composite in zinc decontamination,” Carbohydrate Polymers, vol. 90, no. 2, pp. 1100–1105, 2012.
  118. E.-J. Kim, C.-S. Lee, Y.-Y. Chang, and Y.-S. Chang, “Hierarchically structured manganese oxide -caoted magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems,” ACS Applied Materials & Interfaces, vol. 19, no. 5, pp. 9628–9634, 2013.
  119. S. Singh, K. C. Barick, and D. Bahadur, “Fe3O4 embedded Zno nanocomposites for the removal of toxic metal ions organic dyes and bacterial pathogens,” Journal of Materials Chemistry A, vol. 1, no. 10, pp. 3325–3333, 2013.
  120. Z. Ma, D. Zhao, Y. Chang, S. Xing, Y. Wu, and Y. Gao, “Synthesis of MnFe2O4@Mn-Co oxide core-shell nanaparticles and their excellent performance for heavy metal removal,” Dalton Transactions, vol. 42, no. 39, pp. 14261–14267, 2013.
  121. S.-H. Huang and D.-H. Chen, “Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent,” Journal of Hazardous Materials, vol. 163, no. 1, pp. 174–179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. A. R. Mahdavian and M. A.-S. Mirrahimi, “Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification,” Chemical Engineering Journal, vol. 159, no. 1–3, pp. 264–271, 2010. View at Publisher · View at Google Scholar · View at Scopus
  123. H. Karami, “Heavy metal removal from water by magnetite nanorods,” Chemical Engineering Journal, vol. 219, pp. 209–216, 2013. View at Publisher · View at Google Scholar
  124. A. E. Karatapanis, Y. Fiamegos, and C. D. Stalikas, “Silica-modified magnetic nanoparticles functionalized with cetylpyridinium bromide for the preconcentration of metals after complexation with 8-hydroxyquinoline,” Talanta, vol. 84, no. 3, pp. 834–839, 2011. View at Publisher · View at Google Scholar · View at Scopus
  125. C. Caparrós, M. Benelmekki, P. M. Martins et al., “Hydrothermal assisted synthesis of iron oxide-based magnetic silica spheres and their performance in magnetophoretic water purification,” Chemical Physics, vol. 135, pp. 510–517, 2012.
  126. J. Wang, S. Zheng, Y. Shao, J. Liu, Z. Xu, and D. Zhu, “Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal,” Journal of Colloid and Interface Science, vol. 349, no. 1, pp. 293–299, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. S. Zhang, Y. Zhang, J. Liu et al., “Thiol modified Fe3O4@SiO2 as a robust ,high effective and recycling magnetic sorbent for mercury removal,” Chemical Engineering Journal, vol. 226, pp. 30–38, 2013.
  128. Q. Yuan, N. Li, Y. Chi et al., “Effect of large pore size of multifunctional mesoporous microsphere on removal of heavy metal ions,” Journal of Hazardous Materials, vol. 254-255, pp. 157–165, 2013.
  129. G. Li, Z. Zhao, J. Liu, and G. Jiang, “Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica,” Journal of Hazardous Materials, vol. 192, no. 1, pp. 277–283, 2011. View at Publisher · View at Google Scholar · View at Scopus
  130. M. Baikousi, A. B. Bourlinos, A. Douvalis et al., “Synthesis and characterization of γ-Fe2O3/carbon hybrids and their application in removal of hexavalent chromium ions from aqueous solutions,” Langmuir, vol. 28, no. 8, pp. 3918–3930, 2012. View at Publisher · View at Google Scholar · View at Scopus