About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2014 (2014), Article ID 616240, 12 pages
http://dx.doi.org/10.1155/2014/616240
Research Article

Empirical Correlation of the Morphology of Coiled Carbon Nanotubes with Their Response to Axial Compression

1Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA 30332-0400, USA
2Georgia Institute of Technology, The George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332-0405, USA

Received 23 July 2013; Accepted 23 October 2013; Published 2 February 2014

Academic Editor: Paresh Chandra Ray

Copyright © 2014 Jabulani R. Barber et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. A. Lucas, P. Lambin, V. Ivanov, and J. B. Nagy, “Coiled carbon nanotubes,” in Proceedings of the 2nd International Winterschool on Electronic Properties of Novel Materials, Progress in Fullerene Research, pp. 122–125, 1994.
  2. X. B. Zhang, X. F. Zhang, D. Bernaerts et al., “The texture of catalytically grown coil-shaped carbon nanotubules,” Europhysics Letters, vol. 27, no. 2, pp. 141–146, 1994.
  3. V. Celorrio, L. Calvillo, M. V. Martínez-Huerta, R. Moliner, and M. J. Lázaro, “Study of the synthesis conditions of carbon nanocoils for energetic applications,” Energy and Fuels, vol. 24, no. 6, pp. 3361–3365, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Fejes and K. Hernadi, “A review of the properties and CVD synthesis of coiled carbon nanotubes,” Materials, vol. 3, no. 4, pp. 2618–2642, 2010.
  5. M. J. Hanus and A. T. Harris, “Synthesis, characterisation and applications of coiled carbon nanotubes,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 4, pp. 2261–2283, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Csató, A. Szabó, A. Fonseca et al., “Synthesis and characterisation of coiled carbon nanotubes,” Catalysis Today, vol. 181, no. 1, pp. 33–39, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Li, L. Pan, Y. Wu, and W. Peng, “The effect of changes in synthesis temperature and acetylene supply on the morphology of carbon nanocoils,” Carbon, vol. 50, no. 7, pp. 2571–2580, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Hayashida, L. Pan, and Y. Nakayama, “Mechanical and electrical properties of carbon tubule nanocoils,” Physica B, vol. 323, no. 1–4, pp. 352–353, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. A. F. Da Fonseca and D. S. Galvão, “Mechanical properties of nanosprings,” Physical Review Letters, vol. 92, no. 17, Article ID 175502, 4 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. W. M. Huang, “Mechanics of coiled nanotubes in uniaxial tension,” Materials Science and Engineering A, vol. 408, no. 1-2, pp. 136–140, 2005.
  11. K.-I. Nakamatsu, M. Nagase, H. Namatsu, and S. Matsui, “Mechanical characteristics of diamond-like-carbon nanosprings fabricated by focused-ion-beam chemical vapor deposition,” Japanese Journal of Applied Physics, Part 2, vol. 44, no. 37–41, pp. L1228–L1230, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Bi, K. C. Kou, K. Ostrikov, J. Q. Zhang, and Z. C. Wang, “Mechanical model and superelastic properties of carbon microcoils with circular cross-section,” Journal of Applied Physics, vol. 106, no. 2, Article ID 023520, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. K. T. Lau, M. Lu, H. L. Li, L. M. Zhou, and D. Hui, “Heat absorbability of single-walled, coiled and bamboo nanotube/epoxy nano-composites,” Journal of Materials Science, vol. 39, no. 18, pp. 5861–5863, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Motojima, T. Muraki, T. Suzuki et al., “Preparation of ceramics/carbon microcoils composites using carbon microcoils as a template,” Transactions of the Materials Research Society Of Japan, vol. 29, no. 2, pp. 465–468, 2004.
  15. A. Volodin, D. Buntinx, M. Ahlskog, A. Fonseca, J. B. Nagy, and C. van Haesendonck, “Coiled carbon nanotubes as self-sensing mechanical resonators,” Nano Letters, vol. 4, no. 9, pp. 1775–1779, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Lu, K.-T. Lau, J.-C. Xu, and H.-L. Li, “Coiled carbon nanotubes growth and DSC study in epoxy-based composites,” Colloids and Surfaces A, vol. 257-258, pp. 339–343, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. K.-T. Lau, C. Gu, and D. Hui, “A critical review on nanotube and nanotube/nanoclay related polymer composite materials,” Composites B, vol. 37, no. 6, pp. 425–436, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. K. T. Lau, M. Lu, and D. Hui, “Coiled carbon nanotubes: synthesis and their potential applications in advanced composite structures,” Composites B, vol. 37, no. 6, pp. 437–448, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. X.-F. Li, K.-T. Lau, and Y.-S. Yin, “Nano-mechanical properties of coiled carbon nanotube reinforced epoxy composites,” Key Engineering Materials, vol. 334-335, pp. 673–676, 2007. View at Scopus
  20. A. Leela Mohana Reddy, R. I. Jafri, N. Jha, S. Ramaprabhu, and P. M. Ajayan, “Carbon nanocoils for multi-functional energy applications,” Journal of Materials Chemistry, vol. 21, no. 40, pp. 16103–16107, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. R. B. Rakhi, W. Chen, and H. N. Alshareef, “Conducting polymer/carbon nanocoil composite electrodes for efficient supercapacitors,” Journal of Materials Chemistry, vol. 22, no. 11, pp. 5177–5183, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. M. A. Poggi, J. S. Boyles, L. A. Bottomley et al., “Measuring the compression of a carbon nanospring,” Nano Letters, vol. 4, no. 6, pp. 1009–1016, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. K. M. Barker, A. Ferri, and L. A. Bottomley, “Adhesive and mechanical properties of carbon nanotube probes contacting chemically-treated surfaces,” ASME Conference Proceedings, vol. 2011, pp. 739–746, 2011. View at Publisher · View at Google Scholar
  24. K. M. Barker, M. A. Poggi, L. Lizarraga, P. T. Lillehei, A. A. Ferri, and L. A. Bottomley, “Peeling of long, straight carbon nanotubes from surfaces,” Journal of Nanotechnology. In press.
  25. B. Bhushan and X. Ling, “Adhesion and friction between individual carbon nanotubes measured using force-versus-distance curves in atomic force microscopy,” Physical Review B, vol. 78, no. 4, Article ID 045429, 9 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Bhushan, X. Ling, A. Jungen, and C. Hierold, “Adhesion and friction of a multiwalled carbon nanotube sliding against single-walled carbon nanotube,” Physical Review B, vol. 77, no. 16, Article ID 165428, 12 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Buchoux, J.-P. Aimé, R. Boisgard, C. V. Nguyen, L. Buchaillot, and S. Marsaudon, “Investigation of the carbon nanotube AFM tip contacts: free sliding versus pinned contact,” Nanotechnology, vol. 20, no. 47, Article ID 475701, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Buchoux, L. Bellon, S. Marsaudon, and J.-P. Aimé, “Carbon nanotubes adhesion and nanomechanical behavior from peeling force spectroscopy,” European Physical Journal B, vol. 84, no. 1, pp. 69–77, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. X. Chen, S. Zhang, D. A. Dikin et al., “Mechanics of a carbon nanocoil,” Nano Letters, vol. 3, no. 9, pp. 1299–1304, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. M. R. Falvo, G. J. Clary, R. M. Taylor II et al., “Bending and buckling of carbon nanotubes under large strain,” Nature, vol. 389, no. 6651, pp. 582–584, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Ishikawa, M. Yoshimura, and K. Ueda, “A study of friction by carbon nanotube tip,” Applied Surface Science, vol. 188, no. 3-4, pp. 456–459, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Yonemura, Y. Suda, H. Tanoue et al., “Torsion fracture of carbon nanocoils,” Journal of Applied Physics, vol. 112, no. 8, Article ID 084311, 4 pages, 2012.
  33. R. M. D. Stevens, N. A. Frederick, B. L. Smith, D. E. Morse, G. D. Stucky, and P. K. Hansma, “Carbon nanotubes as probes for atomic force microscopy,” Nanotechnology, vol. 11, no. 1, pp. 1–5, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy,” Surface Science, vol. 291, no. 1-2, pp. 39–46, 1993. View at Scopus
  35. M. J. D'Amato, M. S. Marcus, M. A. Eriksson, and R. W. Carpick, “Phase imaging and the lever-sample tilt angle in dynamic atomic force microscopy,” Applied Physics Letters, vol. 85, no. 20, pp. 4738–4740, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. J. L. Hutter and J. Bechhoefer, “Calibration of atomic-force microscope tips,” Review of Scientific Instruments, vol. 64, no. 7, pp. 1868–1873, 1993. View at Publisher · View at Google Scholar · View at Scopus
  37. M. A. Poggi, L. A. Bottomley, and P. T. Lillehei, “Measuring the adhesion forces between alkanethiol-modified AFM cantilevers and single walled carbon nanotubes,” Nano Letters, vol. 4, no. 1, pp. 61–64, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. M. A. Poggi, P. T. Lillehei, and L. A. Bottomley, “Chemical force microscopy on single-walled carbon nanotube paper,” Chemistry of Materials, vol. 17, no. 17, pp. 4289–4295, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. C.-L. Zhang and H.-S. Shen, “Buckling and postbuckling analysis of single-walled carbon nanotubes in thermal environments via molecular dynamics simulation,” Carbon, vol. 44, no. 13, pp. 2608–2616, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. G. A. Tomlinson, “A molecular theory of friction,” Philosophical Magazine, vol. 7, no. 46, pp. 905–939, 1929.
  41. A. M. Wahl, Mechanical Springs, McGraw-Hill, New York, NY, USA, 1963.
  42. S. H. Ghaderi and E. Hajiesmaili, “Molecular structural mechanics applied to coiled carbon nanotubes,” Computational Materials Science, vol. 55, pp. 344–349, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Volodin, M. Ahlskog, E. Seynaeve, C. van Haesendonck, A. Fonseca, and J. B. Nagy, “Imaging the elastic properties of coiled carbon nanotubes with atomic force microscopy,” Physical Review Letters, vol. 84, no. 15, pp. 3342–3345, 2000. View at Scopus
  44. J. Wang, T. Kemper, T. Liang, and S. B. Sinnott, “Predicted mechanical properties of a coiled carbon nanotube,” Carbon, vol. 50, no. 3, pp. 968–976, 2012. View at Publisher · View at Google Scholar · View at Scopus