About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2014 (2014), Article ID 854018, 7 pages
http://dx.doi.org/10.1155/2014/854018
Research Article

Pharmacokinetic and Tissue Distribution Study of Solid Lipid Nanoparticles of Zidovudine in Rats

Department of Pharmaceutics, Indian Institute of Technology, (Banaras Hindu University), Varanasi 221005, India

Received 31 July 2013; Revised 27 December 2013; Accepted 31 December 2013; Published 19 February 2014

Academic Editor: Jeffery L. Coffer

Copyright © 2014 Shah Purvin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Zidovudine-loaded solid lipid nanoparticles (AZT-SLNs) and zidovudine in solution were prepared and administered in rats. The aim of this research was to study whether the bioavailability of zidovudine can be improved by AZT-SLNs perorally to rats as compared to oral administration of zidovudine. Zidovudine was determined in plasma and tissues by reverse phase high performance liquid chromatography. The pharmacokinetic parameters of zidovudine were determined after peroral administration: area under curve of concentration versus time (AUC) for AZT-SLNs was 31.25% greater than AZT solution; meanwhile mean resident time (MRT) was found to be 1.83 times higher for AZT-SLNs than AZT solution. Elimination half life of zidovudine was also increased for SLN formulation. Tissue distribution pattern of zidovudine was changed in case of AZT-SLNs. AUC of zidovudine in brain and liver was found to be approximately 2.73 and 1.77 times higher in AZT-SLNs than AZT solution, respectively, indicating that AZT-SLNs could cross blood brain barrier. Distribution of zidovudine was approximately 0.95 and 0.86 times lesser in heart and kidney, respectively. It can be concluded from the study that oral administration of AZT-SLNs modifies the plasma pharmacokinetic parameters and biodistribution of zidovudine.