About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2014 (2014), Article ID 863184, 7 pages
http://dx.doi.org/10.1155/2014/863184
Research Article

Enhancing Hydrogen Diffusion in Silica Matrix by Using Metal Ion Implantation to Improve the Emission Properties of Silicon Nanocrystals

Instituto de Física, Universidad Nacional Autónoma de México, 04510 México, DF, Mexico

Received 18 September 2013; Accepted 28 November 2013; Published 6 January 2014

Academic Editor: O. K. Tan

Copyright © 2014 J. Bornacelli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Daldosso and L. Pavesi, “Nanosilicon photonics,” Laser and Photonics Reviews, vol. 3, no. 6, pp. 508–534, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Kovalev, H. Heckler, G. Polisski, and F. Koch, “Optical properties of Si nanocrystals,” Physica Status Solidi (B), vol. 215, no. 2, pp. 871–932, 1999. View at Scopus
  3. V. A. Belyakov, V. A. Burdov, R. Lockwood, and A. Meldrum, “Silicon nanocrystals: fundamental theory and implications for stimulated emission,” Advances in Optical Technologies, vol. 2008, Article ID 279502, 32 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. López, B. Garrido, C. García et al., “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Applied Physics Letters, vol. 80, no. 9, pp. 1637–1639, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. B. G. Fernandez, M. López, C. García et al., “Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2,” Journal of Applied Physics, vol. 91, no. 2, pp. 798–807, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Hiller, M. Jivanescu, A. Stesmans, and M. Zacharias, “Pb(0) centers at the Si-nanocrystal/ SiO2 interface as the dominant photoluminescence quenching defect,” Journal of Applied Physics, vol. 107, no. 8, Article ID 084309, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. R. Wilkinson and R. G. Elliman, “The effect of annealing environment on the luminescence of silicon nanocrystals in silica,” Journal of Applied Physics, vol. 96, no. 7, pp. 4018–4020, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Bolduc, G. Genard, M. Yedji et al., “Influence of nitrogen on the growth and luminescence of silicon nanocrystals embedded in silica,” Journal of Applied Physics, vol. 105, no. 1, Article ID 013108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. L. Brongersma, A. Polman, K. S. Min, E. Boer, T. Tambo, and H. A. Atwater, “Tuning the emission wavelength of Si nanocrystals in SiO2 by oxidation,” Applied Physics Letters, vol. 72, no. 20, pp. 2577–2579, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. A. R. Wilkinson and R. G. Elliman, “Passivation of Si nanocrystals in SiO2: atomic versus molecular hydrogen,” Applied Physics Letters, vol. 83, no. 26, pp. 5512–5514, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. A. R. Wilkinson and R. G. Elliman, “Kinetics of H2 passivation of Si nanocrystals in SiO2,” Physical Review B, vol. 68, no. 15, Article ID 155302, pp. 1–8, 2003. View at Scopus
  12. R. Lockwood, S. McFarlane, J. R. Rodríguez Núñez, X. Y. Wang, J. G. C. Veinot, and A. Meldrum, “Photoactivation of silicon quantum dots,” Journal of Luminescence, vol. 131, no. 7, pp. 1530–1535, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Bornacelli, J. A. Reyes-Esqueda, L. Rodríguez-Fernández, and A. Oliver, “Improving passivation process of Si nanocrystals embedded in SiO2 using metal ion implantation,” Journal of Nanotechnology, vol. 2013, Article ID 736478, 9 pages, 2013. View at Publisher · View at Google Scholar
  14. S. P. Withrow, C. W. White, A. Meldrum, J. D. Budai, D. M. Hembree Jr., and J. C. Barbour, “Effects of hydrogen in the annealing environment on photoluminescence from Si nanoparticles in SiO2,” Journal of Applied Physics, vol. 86, no. 1, pp. 396–401, 1999. View at Scopus
  15. Web page, http://www.srim.org/.
  16. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM-the stopping and range of ions in matter (2010),” Nuclear Instruments and Methods in Physics Research B, vol. 268, no. 11-12, pp. 1818–1823, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. J. A. Leavitt, L. C. Mclntyre Jr., and M. R. Weller, “Backscattering spectrometry,” in Handbook of Modern Ion Beam Materials Analysis, J. R. Tesmer and M. Nastasi, Eds., Materials Research Society, Pittsburgh, Pa, USA, 1995.
  18. V. Rodriguez-Iglesias, O. Pena-Rodriguez, H. G. Silva-Pereyra et al., “Elongated gold nanoparticles obtained by ion implantation in Silica: characterization and T-matrix simulations,” The Journal of Physical Chemistry C, vol. 114, no. 2, pp. 746–751, 2010. View at Publisher · View at Google Scholar
  19. J. C. Barbour and B. L. Doyle, “Elastic recoil detection: ERD,” in Handbook of Modern Ion Beam Materials Analysis, J. R. Tesmer and M. Nastasi, Eds., Materials Research Society, Pittsburgh, Pa, USA, 1995.
  20. M. Mayer, “SIMNRA User's Guide,” Technical Report IPP9/113, Max-Planck-Institut für Plasmaphysik, Garching, Germany, 1997.
  21. M. Mayer, “SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA,” in Proceedings of the 15th International Conference on the Application of Accelerators in Research and Industry, J. L. Duggan and I. L. Morgan, Eds., vol. 475, p. 541, American Institute of Physics Conference Proceedings, 1999.
  22. J. Linnros, N. Lalic, A. Galeckas, and V. Grivickas, “Analysis of the stretched exponential photoluminescence decay from nanometer-sized silicon crystals in SiO2,” Journal of Applied Physics, vol. 86, no. 11, pp. 6128–6134, 1999. View at Scopus
  23. O. Guillois, N. Herlin-Boime, C. Reynaud, G. Ledoux, and F. Huisken, “Photoluminescence decay dynamics of noninteracting silicon nanocrystals,” Journal of Applied Physics, vol. 95, no. 7, pp. 3677–3682, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. J. F. Shackelford, P. L. Studt, and R. M. Fulrath, “Solubility of gases in glass. II. He, Ne, and H2 in fused silica,” Journal of Applied Physics, vol. 43, no. 4, pp. 1619–1626, 1972. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Roiz, A. Oliver, E. Muñoz, L. Rodríguez-Fernández, J. M. Hernández, and J. C. Cheang-Wong, “Modification of the optical properties of Ag-implanted silica by annealing in two different atmospheres,” Journal of Applied Physics, vol. 95, no. 4, pp. 1783–1791, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Physical Review B, vol. 76, no. 11, Article ID 115123, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” Journal of Physical Chemistry C, vol. 111, no. 36, pp. 13372–13377, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Letters, vol. 5, no. 9, pp. 1768–1773, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. J. B. Johnson and R. C. Burt, “The passage of hydrogen through quartz glass,” Journal of Optical Society of America, vol. 6, no. 7, pp. 734–738, 1922. View at Publisher · View at Google Scholar
  30. R. M. Barrer, “The mechanism of activated diffusion through silica glass,” Journal of the Chemical Society, vol. 136, pp. 378–386, 1934. View at Scopus