About this Journal Submit a Manuscript Table of Contents
Journal of Oncology
Volume 2009 (2009), Article ID 408038, 8 pages
http://dx.doi.org/10.1155/2009/408038
Research Article

Synergistic Induction of Apoptosis in Primary B-CLL Cells after Treatment with Recombinant Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand and Histone Deacetylase Inhibitors

Department of Urology and Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA

Received 8 September 2008; Revised 6 February 2009; Accepted 10 April 2009

Academic Editor: Michael A. Carducci

Copyright © 2009 Lyse A. Norian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. S. Griffith and D. H. Lynch, “TRAIL: a molecule with multiple receptors and control mechanisms,” Current Opinion in Immunology, vol. 10, no. 5, pp. 559–563, 1998. View at Publisher · View at Google Scholar
  2. S. R. Wiley, K. Schooley, P. J. Smolak, et al., “Identification and characterization of a new member of the TNF family that induces apoptosis,” Immunity, vol. 3, no. 6, pp. 673–682, 1995. View at Publisher · View at Google Scholar
  3. S. K. Kelley and A. Ashkenazi, “Targeting death receptors in cancer with Apo2L/TRAIL,” Current Opinion in Pharmacology, vol. 4, no. 4, pp. 333–339, 2004. View at Publisher · View at Google Scholar
  4. G. Pan, K. O'Rourke, A. M. Chinnaiyan, et al., “The receptor for the cytotoxic ligand TRAIL,” Science, vol. 276, no. 5309, pp. 111–113, 1997. View at Publisher · View at Google Scholar
  5. G. Pan, J. Ni, Y.-F. Wei, G.-I. Yu, R. Gentz, and V. M. Dixit, “An antagonist decoy receptor and a death domain-containing receptor for TRAIL,” Science, vol. 277, no. 5327, pp. 815–818, 1997. View at Publisher · View at Google Scholar
  6. J. P. Sheridan, S. A. Marsters, R. M. Pitti, et al., “Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors,” Science, vol. 277, no. 5327, pp. 818–821, 1997. View at Publisher · View at Google Scholar
  7. H. Walczak, M. A. Degli-Esposti, R. S. Johnson, et al., “TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL,” The EMBO Journal, vol. 16, no. 17, pp. 5386–5397, 1997. View at Publisher · View at Google Scholar
  8. A. M. Chinnaiyan, C. G. Tepper, M. F. Seldin, et al., “FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis,” The Journal of Biological Chemistry, vol. 271, no. 9, pp. 4961–4965, 1996. View at Publisher · View at Google Scholar
  9. J.-L. Bodmer, N. Holler, S. Reynard, et al., “TRAIL receptor-2 signals apoptosis through FADD and caspase-8,” Nature Cell Biology, vol. 2, no. 4, pp. 241–243, 2000. View at Publisher · View at Google Scholar
  10. F. C. Kischkel, D. A. Lawrence, A. Chuntharapai, P. Schow, K. J. Kim, and A. Ashkenazi, “Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5,” Immunity, vol. 12, no. 6, pp. 611–620, 2000. View at Publisher · View at Google Scholar
  11. J. C. Reed, “Mechanisms of apoptosis,” The American Journal of Pathology, vol. 157, no. 5, pp. 1415–1430, 2000.
  12. M. R. Sprick, M. A. Weigand, E. Rieser, et al., “FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2,” Immunity, vol. 12, no. 6, pp. 599–609, 2000. View at Publisher · View at Google Scholar
  13. K. M. Hajra and J. R. Liu, “Apoptosome dysfunction in human cancer,” Apoptosis, vol. 9, no. 6, pp. 691–704, 2004. View at Publisher · View at Google Scholar
  14. C. R. Johnson and W. D. Jarvis, “Caspase-9 regulation: an update,” Apoptosis, vol. 9, no. 4, pp. 423–427, 2004. View at Publisher · View at Google Scholar
  15. A. Ashkenazi, P. Holland, and S. G. Eckhardt, “Ligand-based targeting of apoptosis in cancer: the potential of recombinant human apoptosis ligand 2/tumor necrosis factor-related apoptosis-inducing ligand (rhApo2L/TRAIL),” Journal of Clinical Oncology, vol. 26, no. 21, pp. 3621–3630, 2008. View at Publisher · View at Google Scholar
  16. H. N. LeBlanc and A. Ashkenazi, “Apo2L/TRAIL and its death and decoy receptors,” Cell Death and Differentiation, vol. 10, no. 1, pp. 66–75, 2003. View at Publisher · View at Google Scholar
  17. C. Rozman and E. Montserrat, “Chronic lymphocytic leukemia,” The New England Journal of Medicine, vol. 333, no. 16, pp. 1052–1057, 1995. View at Publisher · View at Google Scholar
  18. T. J. Hamblin and D. G. Oscier, “Chronic lymphocytic leukaemia: the nature of the leukaemic cell,” Blood Reviews, vol. 11, no. 3, pp. 119–128, 1997. View at Publisher · View at Google Scholar
  19. M. MacFarlane, N. Harper, T. R. Snowden, et al., “Mechanisms of resistance to TRAIL-induced apoptosis in primary B cell chronic lymphocytic leukaemia,” Oncogene, vol. 21, no. 44, pp. 6809–6818, 2002. View at Publisher · View at Google Scholar
  20. J. E. Bolden, M. J. Peart, and R. W. Johnstone, “Anticancer activities of histone deacetylase inhibitors,” Nature Reviews Drug Discovery, vol. 5, no. 9, pp. 769–784, 2006. View at Publisher · View at Google Scholar
  21. W. K. Rasheed, R. W. Johnstone, and H. M. Prince, “Histone deacetylase inhibitors in cancer therapy,” Expert Opinion on Investigational Drugs, vol. 16, no. 5, pp. 659–678, 2007. View at Publisher · View at Google Scholar
  22. T. Jenuwein and C. D. Allis, “Translating the histone code,” Science, vol. 293, no. 5532, pp. 1074–1080, 2001. View at Publisher · View at Google Scholar
  23. P. A. Marks, R. A. Rifkind, V. M. Richon, R. Breslow, T. Miller, and W. K. Kelly, “Histone deacetylases and cancer: causes and therapies,” Nature Reviews Cancer, vol. 1, no. 3, pp. 194–202, 2001. View at Publisher · View at Google Scholar
  24. J. S. Carew, F. J. Giles, and S. T. Nawrocki, “Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy,” Cancer Letters, vol. 269, no. 1, pp. 7–17, 2008. View at Publisher · View at Google Scholar
  25. R. L. vanOosten, J. K. Earel Jr., and T. S. Griffith, “Histone deacetylase inhibitors enhance Ad5-TRAIL killing of TRAIL-resistant prostate tumor cells through increased caspase-2 activity,” Apoptosis, vol. 12, no. 3, pp. 561–571, 2007. View at Publisher · View at Google Scholar
  26. R. L. vanOosten, J. K. Earel Jr., and T. S. Griffith, “Enhancement of Ad5-TRAIL cytotoxicity against renal cell carcinoma with histone deacetylase inhibitors,” Cancer Gene Therapy, vol. 13, no. 6, pp. 628–632, 2006. View at Publisher · View at Google Scholar
  27. S. Fulda, “Modulation of TRAIL-induced apoptosis by HDAC inhibitors,” Current Cancer Drug Targets, vol. 8, no. 2, pp. 132–140, 2008. View at Publisher · View at Google Scholar
  28. R. R. Rosato, J. A. Almenara, Y. Dai, and S. Grant, “Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells,” Molecular Cancer Therapeutics, vol. 2, no. 12, pp. 1273–1284, 2003.
  29. S. Inoue, A. Mai, M. J. S. Dyer, and G. M. Cohen, “Inhibition of histone deacetylase class I but not class II is critical for the sensitization of leukemic cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis,” Cancer Research, vol. 66, no. 13, pp. 6785–6792, 2006. View at Publisher · View at Google Scholar
  30. J. K. Earel Jr., R. L. vanOosten, and T. S. Griffith, “Histone deacetylase inhibitors modulate the sensitivity of tumor necrosis factor-related apoptosis-inducing ligand-resistant bladder tumor cells,” Cancer Research, vol. 66, no. 1, pp. 499–507, 2006. View at Publisher · View at Google Scholar
  31. B. Karacay, S. Sanlioglu, T. S. Griffith, A. Sandler, and D. J. Bonthius, “Inhibition of the NF-κB pathway enhances TRAIL-mediated apoptosis in neuroblastoma cells,” Cancer Gene Therapy, vol. 11, no. 10, pp. 681–690, 2004. View at Publisher · View at Google Scholar
  32. R. L. vanOosten, J. M. Moore, B. Karacay, and T. S. Griffith, “Histone deacetylase inhibitors modulate renal cell carcinoma sensitivity to TRAIL/Apo-2L-induced apoptosis by enhancing TRAIL-R2 expression,” Cancer Biology & Therapy, vol. 4, no. 10, pp. 1104–1112, 2005.
  33. M. Garofalo, G. Romano, C. Quintavalle, et al., “Selective inhibition of PED protein expression sensitizes B-cell chronic lymphocytic leukaemia cells to TRAIL-induced apoptosis,” International Journal of Cancer, vol. 120, no. 6, pp. 1215–1222, 2007. View at Publisher · View at Google Scholar
  34. A. Olsson, T. Diaz, M. Aguilar-Santelises, et al., “Sensitization to TRAIL-induced apoptosis and modulation of FLICE-inhibitory protein in B chronic lymphocytic leukemia by actinomycin D,” Leukemia, vol. 15, no. 12, pp. 1868–1877, 2001.
  35. M. Movassagh and R. S.-Y. Foo, “Simplified apoptotic cascades,” Heart Failure Reviews, vol. 13, no. 2, pp. 111–119, 2008. View at Publisher · View at Google Scholar
  36. D. R. Green and G. Kroemer, “The pathophysiology of mitochondrial cell death,” Science, vol. 305, no. 5684, pp. 626–629, 2004. View at Publisher · View at Google Scholar
  37. M. J. Keating, I. Flinn, V. Jain, et al., “Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study,” Blood, vol. 99, no. 10, pp. 3554–3561, 2002. View at Publisher · View at Google Scholar