About this Journal Submit a Manuscript Table of Contents
Journal of Oncology
Volume 2009 (2009), Article ID 752135, 10 pages
http://dx.doi.org/10.1155/2009/752135
Review Article

Recent Advances in Image-Guided Radiotherapy for Head and Neck Carcinoma

Department of Radiation Oncology, Rebecca and John Moores Comprehensive Cancer Center, University of California at San Diego, La Jolla, CA 92093-0843, USA

Received 1 April 2009; Revised 29 May 2009; Accepted 3 June 2009

Academic Editor: Paul Harari

Copyright © 2009 Sameer K. Nath et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. K. Mell, A. K. Mehrotra, and A. J. Mundt, “Intensity-modulated radiation therapy use in the U.S., 2004,” Cancer, vol. 104, no. 6, pp. 1296–1303, 2005. View at Publisher · View at Google Scholar · View at PubMed
  2. W. A. Tome and J. F. Fowler, “On cold spots in tumor subvolumes,” Medical Physics, vol. 29, no. 7, pp. 1590–1598, 2002. View at Publisher · View at Google Scholar
  3. T. S. Hong, W. A. Tome, R. J. Chappell, P. Chinnaiyan, M. P. Mehta, and P. M. Harari, “The impact of daily setup variations on head-and-neck intensity-modulated radiation therapy,” International Journal of Radiation Oncology Biology Physics, vol. 61, no. 3, pp. 779–788, 2005. View at Publisher · View at Google Scholar · View at PubMed
  4. T. S. Hong, W. A. Tome, and P. M. Harari, “Intensity-modulated radiation therapy in the management of head and neck cancer,” Current Opinion in Oncology, vol. 17, no. 3, pp. 231–235, 2005. View at Publisher · View at Google Scholar
  5. L. Mell, T. Pawlicki, S. B. Jiang, and A. J. Mundt, “Imaged-guided radiotherapy,” in Perez and Brady's Principles and Practice of Radiation Oncology, pp. 263–299, 5th edition, 2008.
  6. D. J. Adelstein, P. Lavertu, J. P. Saxton, et al., “Mature results of a phase III randomized trial comparing concurrent chemoradiotherapy with radiation therapy alone in patients with stage III and IV squamous cell carcinoma of the head and neck,” Cancer, vol. 88, no. 4, pp. 876–883, 2000. View at Publisher · View at Google Scholar
  7. J. A. Bonner, P. M. Harari, J. Giralt, et al., “Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck,” The New England Journal of Medicine, vol. 354, no. 6, pp. 567–578, 2006. View at Publisher · View at Google Scholar · View at PubMed
  8. L. B. Harrison, M. J. Zelefsky, J. G. Armstrong, E. Carper, J. J. Gaynor, and R. B. Sessions, “Performance status after treatment for squamous cell cancer of the base of tongue: a comparison of primary radiation therapy versus primary surgery,” International Journal of Radiation Oncology Biology Physics, vol. 30, no. 4, pp. 953–957, 1994.
  9. D. G. Pfister, S. A. Laurie, G. S. Weinstein, et al., “American Society of Clinical Oncology clinical practice guideline for the use of larynx-preservation strategies in the treatment of laryngeal cancer,” Journal of Clinical Oncology, vol. 24, no. 22, pp. 3693–3704, 2006. View at Publisher · View at Google Scholar · View at PubMed
  10. M. Al-Sarraf, M. LeBlanc, P. G. S. Giri, et al., “Chemoradiotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer: phase III randomized Intergroup study 0099,” Journal of Clinical Oncology, vol. 16, no. 4, pp. 1310–1317, 1998.
  11. J. Bernier, C. Domenge, M. Ozsahin, et al., “Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer,” The New England Journal of Medicine, vol. 350, no. 19, pp. 1945–1952, 2004. View at Publisher · View at Google Scholar · View at PubMed
  12. J. S. Cooper, T. F. Pajak, A. A. Forastiere, et al., “Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck,” The New England Journal of Medicine, vol. 350, no. 19, pp. 1937–1944, 2004. View at Publisher · View at Google Scholar · View at PubMed
  13. M. T. Milano, E. E. Vokes, J. K. Salama, et al., “Twice-daily reirradiation for recurrent and second primary head-and-neck cancer with gemcitabine, paclitaxel, and 5-fluorouracil chemotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 61, no. 4, pp. 1096–1106, 2005. View at Publisher · View at Google Scholar · View at PubMed
  14. J. S. Cooper, S. K. Mukherji, A. Y. Toledano, et al., “An evaluation of the variability of tumor-shape definition derived by experienced observers from CT images of supraglottic carcinomas (ACRIN protocol 6658),” International Journal of Radiation Oncology Biology Physics, vol. 67, no. 4, pp. 972–975, 2007. View at Publisher · View at Google Scholar · View at PubMed
  15. R. M. Pieterman, J. W. G. Van Putten, J. J. Meuzelaar, et al., “Preoperative staging of non-small-cell lung cancer with positron-emission tomography,” The New England Journal of Medicine, vol. 343, no. 4, pp. 254–261, 2000. View at Publisher · View at Google Scholar
  16. H. Schoder, A. Noy, M. Gonen, et al., “Intensity of 18fluorodeoxyglucose uptake in positron emission tomography distinguishes between indolent and aggressive non-Hodgkin's lymphoma,” Journal of Clinical Oncology, vol. 23, no. 21, pp. 4643–4651, 2005. View at Publisher · View at Google Scholar · View at PubMed
  17. D. L. Schwartz, E. Ford, J. Rajendran, et al., “FDG-PET/CT imaging for preradiotherapy staging of head-and-neck squamous cell carcinoma,” International Journal of Radiation Oncology Biology Physics, vol. 61, no. 1, pp. 129–136, 2005. View at Publisher · View at Google Scholar · View at PubMed
  18. M. R. Vernon, M. Maheshwari, C. J. Schultz, et al., “Clinical outcomes of patients receiving integrated PET/CT-guided radiotherapy for head and neck carcinoma,” International Journal of Radiation Oncology Biology Physics, vol. 70, no. 3, pp. 678–684, 2008. View at Publisher · View at Google Scholar · View at PubMed
  19. X. Geets, J.-F. Daisne, V. Gregoire, M. Hamoir, and M. Lonneux, “Role of 11-C-methionine positron emission tomography for the delineation of the tumor volume in pharyngo-laryngeal squamous cell carcinoma: comparison with FDG-PET and CT,” Radiotherapy and Oncology, vol. 71, no. 3, pp. 267–273, 2004. View at Publisher · View at Google Scholar · View at PubMed
  20. D. L. Schwartz, E. C. Ford, J. Rajendran, et al., “FDG-PET/CT-guided intensity modulated head and neck radiotherapy: a pilot investigation,” Head and Neck, vol. 27, no. 6, pp. 478–487, 2005. View at Publisher · View at Google Scholar · View at PubMed
  21. A. C. Paulino, M. Koshy, R. Howell, D. Schuster, and L. W. Davis, “Comparison of CT- and FDG-PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer,” International Journal of Radiation Oncology Biology Physics, vol. 61, no. 5, pp. 1385–1392, 2005. View at Publisher · View at Google Scholar · View at PubMed
  22. M. Koshy, A. C. Paulino, R. Howell, D. Schuster, R. Halkar, and L. W. Davis, “F-18 FDG PET-CT fusion in radiotherapy treatment planning for head and neck cancer,” Head and Neck, vol. 27, no. 6, pp. 494–502, 2005. View at Publisher · View at Google Scholar · View at PubMed
  23. D. E. Heron, R. S. Andrade, J. Flickinger, et al., “Hybrid PET-CT simulation for radiation treatment planning in head-and-neck cancers: a brief technical report,” International Journal of Radiation Oncology Biology Physics, vol. 60, no. 5, pp. 1419–1424, 2004. View at Publisher · View at Google Scholar · View at PubMed
  24. C. Scarfone, W. C. Lavely, A. J. Cmelak, et al., “Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging,” Journal of Nuclear Medicine, vol. 45, no. 4, pp. 543–552, 2004.
  25. D. Wang, C. J. Schultz, P. A. Jursinic, et al., “Initial experience of FDG-PET/CT guided IMRT of head-and-neck carcinoma,” International Journal of Radiation Oncology Biology Physics, vol. 65, no. 1, pp. 143–151, 2006. View at Publisher · View at Google Scholar · View at PubMed
  26. A. Guido, L. Fuccio, B. Rombi, et al., “Combined 18F-FDG-PET/CT imaging in radiotherapy target delineation for head-and-neck cancer,” International Journal of Radiation Oncology Biology Physics, vol. 73, no. 3, pp. 759–763, 2009. View at Publisher · View at Google Scholar · View at PubMed
  27. J. G. Rajendran, K. R. G. Hendrickson, A. M. Spence, M. Muzi, K. A. Krohn, and D. A. Mankoff, “Hypoxia imaging-directed radiation treatment planning,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 33, supplement 13, pp. S44–S53, 2006. View at Publisher · View at Google Scholar · View at PubMed
  28. J. S. Rasey, W.-J. Koh, M. L. Evans, et al., “Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients,” International Journal of Radiation Oncology Biology Physics, vol. 36, no. 2, pp. 417–428, 1996. View at Publisher · View at Google Scholar
  29. R. J. Hicks, D. Rischin, R. Fisher, D. Binns, A. M. Scott, and L. J. Peters, “Utility of FMISO PET in advanced head and neck cancer treated with chemoradiation incorporating a hypoxia-targeting chemotherapy agent,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 32, no. 12, pp. 1384–1391, 2005. View at Publisher · View at Google Scholar · View at PubMed
  30. J. G. Rajendran, D. L. Schwartz, J. O'Sullivan, et al., “Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer,” Clinical Cancer Research, vol. 12, no. 18, pp. 5435–5441, 2006. View at Publisher · View at Google Scholar · View at PubMed
  31. N. Y. Lee, J. G. Mechalakos, S. Nehmeh, et al., “Fluorine-18-labeled fluoromisonidazole positron emission and computed tomography-guided intensity-modulated radiotherapy for head and neck cancer: a feasibility study,” International Journal of Radiation Oncology Biology Physics, vol. 70, no. 1, pp. 2–13, 2008. View at Publisher · View at Google Scholar · View at PubMed
  32. N. Lee, S. Nehmeh, H. Schoder, et al., “Prospective trial incorporating Pre-/Mid-treatment [(18)F]-misonidazole positron emission tomography for head-and-neck cancer patients undergoing concurrent chemoradiotherapy,” International Journal of Radiation Oncology Biology Physics. In press.
  33. M. Nordsmark, S. M. Bentzen, V. Rudat, et al., “Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study,” Radiotherapy and Oncology, vol. 77, no. 1, pp. 18–24, 2005. View at Publisher · View at Google Scholar · View at PubMed
  34. D. M. Brizel, G. S. Sibley, L. R. Prosnitz, R. L. Scher, and M. W. Dewhirst, “Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck,” International Journal of Radiation Oncology Biology Physics, vol. 38, no. 2, pp. 285–289, 1997. View at Publisher · View at Google Scholar
  35. J. Bussink, J. H. A. M. Kaanders, and A. J. van der Kogel, “Tumor hypoxia at the micro-regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers,” Radiotherapy and Oncology, vol. 67, no. 1, pp. 3–15, 2003. View at Publisher · View at Google Scholar
  36. M. Nordsmark and J. Overgaard, “A confirmatory prognostic study on oxygenation status and loco-regional control in advanced head and neck squamous cell carcinoma treated by radiation therapy,” Radiotherapy and Oncology, vol. 57, no. 1, pp. 39–43, 2000. View at Publisher · View at Google Scholar
  37. A. Sun, J. Sorensen, M. Karlsson, et al., “1-[11C]-acetate PET imaging in head and neck cancer: a comparison with 18F-FDG-PET: implications for staging and radiotherapy planning,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 5, pp. 651–657, 2007. View at Publisher · View at Google Scholar · View at PubMed
  38. A. F. Shields, J. R. Grierson, B. M. Dohmen, et al., “Imaging proliferation in vivo with [F-18]FLT and positron emission tomography,” Nature Medicine, vol. 4, no. 11, pp. 1334–1336, 1998. View at Publisher · View at Google Scholar · View at PubMed
  39. A. Linecker, C. Kermer, I. Sulzbacher, et al., “Uptake of 18F-FLT and 18F-FDG in primary head and neck cancer correlates with survival,” NuklearMedizin, vol. 47, no. 2, pp. 80–85, 2008. View at Publisher · View at Google Scholar
  40. A. J. de Langen, B. Klabbers, M. Lubberink, et al., “Reproducibility of quantitative 18F-3-deoxy-3-fluorothymidine measurements using positron emission tomography,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 36, no. 3, pp. 389–395, 2009. View at Publisher · View at Google Scholar · View at PubMed
  41. C. F. Molthoff, B. M. Klabbers, J. Berkhof, et al., “Monitoring response to radiotherapy in human squamous cell cancer bearing nude mice: comparison of 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and 3-[18F]fluoro-3-deoxythymidine (FLT),” Molecular Imaging and Biology, vol. 9, no. 6, pp. 340–347, 2007.
  42. K. S. C. Chao, W. R. Bosch, S. Mutic, et al., “A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy,” International Journal of Radiation Oncology Biology Physics, vol. 49, no. 4, pp. 1171–1182, 2001. View at Publisher · View at Google Scholar
  43. J. Boda-Heggemann, C. Walter, A. Rahn, et al., “Repositioning accuracy of two different mask systems-3D revisited: comparison using true 3D/3D matching with cone-beam CT,” International Journal of Radiation Oncology Biology Physics, vol. 66, no. 5, pp. 1568–1575, 2006. View at Publisher · View at Google Scholar · View at PubMed
  44. N. Linthout, D. Verellen, K. Tournel, and G. Storme, “Six dimensional analysis with daily stereoscopic X-ray imaging of intrafraction patient motion in head and neck treatments using five points fixation masks,” Medical Physics, vol. 33, no. 2, pp. 504–513, 2006. View at Publisher · View at Google Scholar
  45. L. Gilbeau, M. Octave-Prignot, T. Loncol, L. Renard, P. Scalliet, and V. Gregoire, “Comparison of setup accuracy of three different thermoplastic masks for the treatment of brain and head and neck tumors,” Radiotherapy and Oncology, vol. 58, no. 2, pp. 155–162, 2001. View at Publisher · View at Google Scholar
  46. C. F. Hess, R. D. Kortmann, R. Jany, A. Hamberger, and M. Bamberg, “Accuracy of field alignment in radiotherapy of head and neck cancer utilizing individualized face mask immobilization: a retrospective analysis of clinical practice,” Radiotherapy and Oncology, vol. 34, no. 1, pp. 69–72, 1995. View at Publisher · View at Google Scholar
  47. R. L. Rotondo, K. Sultanem, I. Lavoie, J. Skelly, and L. Raymond, “Comparison of repositioning accuracy of two commercially available immobilization systems for treatment of head-and-neck tumors using simulation computed tomography imaging,” International Journal of Radiation Oncology Biology Physics, vol. 70, no. 5, pp. 1389–1396, 2008. View at Publisher · View at Google Scholar · View at PubMed
  48. J. Willner, U. Hädinger, M. Neumann, F. J. Schwab, K. Bratengeier, and M. Flentje, “Three dimensional variability in patient positioning using bite block immobilization in 3D-conformal radiation treatment for ENT-tumors,” Radiotherapy and Oncology, vol. 43, no. 3, pp. 315–321, 1997. View at Publisher · View at Google Scholar
  49. H. Li, X. R. Zhu, L. Zhang, et al., “Comparison of 2D radiographic images and 3D cone beam computed tomography for positioning head-and-neck radiotherapy patients,” International Journal of Radiation Oncology Biology Physics, vol. 71, no. 3, pp. 916–925, 2008. View at Publisher · View at Google Scholar · View at PubMed
  50. P. H. Ahn, A. I. Ahn, C. J. Lee, et al., “Random positional variation among the skull, mandible, and cervical spine with treatment progression during head-and-neck radiotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 73, no. 2, pp. 626–633, 2009. View at Publisher · View at Google Scholar · View at PubMed
  51. L. Zhang, A. S. Garden, J. Lo, et al., “Multiple regions-of-interest analysis of setup uncertainties for head-and-neck cancer radiotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 64, no. 5, pp. 1559–1569, 2006. View at Publisher · View at Google Scholar · View at PubMed
  52. A. Bel, R. Keus, R. E. Vijlbrief, and J. V. Lebesque, “Setup deviations in wedged pair irradiation of parotid gland and tonsillar tumors, measured with an electronic portal imaging device,” Radiotherapy and Oncology, vol. 37, no. 2, pp. 153–159, 1995. View at Publisher · View at Google Scholar
  53. H. C. J. de Boer, J. R. van Sornsen de Koste, C. L. Creutzberg, A. G. Visser, P. C. Levendag, and B. J. M. Heijmen, “Electronic portal image assisted reduction of systematic set-up errors in head and neck irradiation,” Radiotherapy and Oncology, vol. 61, no. 3, pp. 299–308, 2001. View at Publisher · View at Google Scholar
  54. J. G. Mechalakos, M. A. Hunt, N. Y. Lee, L. X. Hong, C. C. Ling, and H. I. Amols, “Using an onboard kilovoltage imager to measure setup deviation in intensity-modulated radiation therapy for head-and-neck patients,” Journal of Applied Clinical Medical Physics, vol. 8, no. 4, p. 2439, 2007.
  55. J. D. Lawson, T. Fox, E. Elder, et al., “Early clinical experience with kilovoltage image-guided radiation therapy for interfraction motion management,” Medical Dosimetry, vol. 33, no. 4, pp. 268–274, 2008. View at Publisher · View at Google Scholar · View at PubMed
  56. G. J. Meijer, I. A. D. Bruinvis, B. J. Mijnheer, and J. V. Lebesque, “A treatment planning method to correct dose distributions distorted by setup verification fields,” International Journal of Radiation Oncology Biology Physics, vol. 46, no. 5, pp. 1319–1328, 2000. View at Publisher · View at Google Scholar
  57. C. D. Mubata, A. M. Bidmead, L. M. Ellingham, V. Thompson, and D. P. Dearnaley, “Portal imaging protocol for radical dose-escalated radiotherapy treatment of prostate cancer,” International Journal of Radiation Oncology Biology Physics, vol. 40, no. 1, pp. 221–231, 1998. View at Publisher · View at Google Scholar
  58. L. Pisani, D. Lockman, D. Jaffray, D. Yan, A. Martinez, and J. Wong, “Setup error in radiotherapy: on-line correction using electronic kilovoltage and megavoltage radiographs,” International Journal of Radiation Oncology Biology Physics, vol. 47, no. 3, pp. 825–839, 2000. View at Publisher · View at Google Scholar
  59. G.-Y. Kim, T. Pawlicki, Q.-T. Le, and G. Luxton, “Linac-based on-board imaging feasibility and the dosimetric consequences of head roll in head-and-neck IMRT plans,” Medical Dosimetry, vol. 33, no. 1, pp. 93–99, 2008. View at Publisher · View at Google Scholar · View at PubMed
  60. L. C. Ezzell, E. K. Hansen, J. M. Quivey, and P. Xia, “Detection of treatment setup errors between two CT scans for patients with head and neck cancer,” Medical Physics, vol. 34, no. 8, pp. 3233–3242, 2007. View at Publisher · View at Google Scholar
  61. J. R. Wong, L. Grimm, M. Uematsu, et al., “Image-guided radiotherapy for prostate cancer by CT-linear accelerator combination: prostate movements and dosimetric considerations,” International Journal of Radiation Oncology Biology Physics, vol. 61, no. 2, pp. 561–569, 2005. View at Publisher · View at Google Scholar · View at PubMed
  62. K. Kuriyama, H. Onishi, N. Sano, et al., “A new irradiation unit constructed of self-moving gantry-CT and linac,” International Journal of Radiation Oncology Biology Physics, vol. 55, no. 2, pp. 428–435, 2003. View at Publisher · View at Google Scholar
  63. C. Thilmann, S. Nill, T. Tücking, et al., “Correction of patient positioning errors based on in-line cone beam CTs: clinical implementation and first experiences,” Radiation Oncology, vol. 1, article 16, 2006. View at Publisher · View at Google Scholar · View at PubMed
  64. B. A. Groh, J. H. Siewerdsen, D. G. Drake, J. W. Wong, and D. A. Jaffray, “A performance comparison of flat-panel imager-based MV and kV cone-beam CT,” Medical Physics, vol. 29, no. 6, pp. 967–975, 2002. View at Publisher · View at Google Scholar
  65. F. Xu, J. Wang, S. Bai, et al., “Detection of intrafractional tumour position error in radiotherapy utilizing cone beam computed tomography,” Radiotherapy and Oncology, vol. 89, no. 3, pp. 311–319, 2008. View at Publisher · View at Google Scholar · View at PubMed
  66. F. Xu, J. Wang, S. Bai, Q. F. Xu, Y. L. Shen, and R. M. Zhong, “Interfractional and intrafractional setup errors in radiotherapy for tumors analyzed by cone-beam computed tomography,” Ai Zheng, vol. 27, pp. 1111–1116, 2008.
  67. J. Wang, S. Bai, N. Chen, et al., “The clinical feasibility and effect of online cone beam computer tomography-guided intensity-modulated radiotherapy for nasopharyngeal cancer,” Radiotherapy and Oncology, vol. 90, no. 2, pp. 221–227, 2009. View at Publisher · View at Google Scholar · View at PubMed
  68. J. Wang, F. Xu, S. Bai, et al., “Preliminary application of kilo-volt cone-beam computed tomography to intensity-modulated radiotherapy of nasopharyngeal carcinoma,” Ai Zheng, vol. 27, no. 7, pp. 761–765, 2008.
  69. J. R. Sykes, A. Amer, J. Czajka, and C. J. Moore, “A feasibility study for image guided radiotherapy using low dose, high speed, cone beam X-ray volumetric imaging,” Radiotherapy and Oncology, vol. 77, no. 1, pp. 45–52, 2005. View at Publisher · View at Google Scholar · View at PubMed
  70. M. K. Islam, T. G. Purdie, B. D. Norrlinger, et al., “Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy,” Medical Physics, vol. 33, no. 6, pp. 1573–1582, 2006. View at Publisher · View at Google Scholar
  71. M. W. K. Kan, L. H. T. Leung, W. Wong, and N. Lam, “Radiation dose from cone beam computed tomography for image-guided radiation therapy,” International Journal of Radiation Oncology Biology Physics, vol. 70, no. 1, pp. 272–279, 2008. View at Publisher · View at Google Scholar · View at PubMed
  72. G. X. Ding, D. M. Duggan, and C. W. Coffey, “Accurate patient dosimetry of kilovoltage cone-beam CT in radiation therapy,” Medical Physics, vol. 35, no. 3, pp. 1135–1144, 2008. View at Publisher · View at Google Scholar
  73. W. A. Tome, H. A. Jaradat, I. A. Nelson, M. A. Ritter, and M. P. Mehta, “Helical tomotherapy: image guidance and adaptive dose guidance,” Frontiers of Radiation Therapy and Oncology, vol. 40, pp. 162–178, 2007. View at Publisher · View at Google Scholar · View at PubMed
  74. F. Sterzing, K. Schubert, G. Sroka-Perez, J. Kalz, J. Debus, and K. Herfarth, “Helical tomotherapy: experiences of the first 150 patients in Heidelberg,” Strahlentherapie und Onkologie, vol. 184, no. 1, pp. 8–14, 2008. View at Publisher · View at Google Scholar · View at PubMed
  75. T. S. Hong, J. S. Welsh, M. A. Ritter, et al., “Megavoltage computed tomography: an emerging tool for image-guided radiotherapy,” American Journal of Clinical Oncology, vol. 30, no. 6, pp. 617–623, 2007. View at Publisher · View at Google Scholar · View at PubMed
  76. G. Bauman, S. Yartsev, G. Rodrigues, et al., “A prospective evaluation of helical tomotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 68, no. 2, pp. 632–641, 2007. View at Publisher · View at Google Scholar · View at PubMed
  77. M. van Vulpen, C. Field, C. P. J. Raaijmakers, et al., “Comparing step-and-shoot IMRT with dynamic helical tomotherapy IMRT plans for head-and-neck cancer,” International Journal of Radiation Oncology Biology Physics, vol. 62, no. 5, pp. 1535–1539, 2005. View at Publisher · View at Google Scholar · View at PubMed
  78. C. Fiorino, I. Dell'Oca, A. Pierelli, et al., “Significant improvement in normal tissue sparing and target coverage for head and neck cancer by means of helical tomotherapy,” Radiotherapy and Oncology, vol. 78, no. 3, pp. 276–282, 2006. View at Publisher · View at Google Scholar · View at PubMed
  79. K. Sheng, J. A. Molloy, and P. W. Read, “Intensity-modulated radiation therapy (IMRT) dosimetry of the head and neck: a comparison of treatment plans using linear accelerator-based IMRT and helical tomotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 65, no. 3, pp. 917–923, 2006. View at Publisher · View at Google Scholar · View at PubMed
  80. E. T. Soisson, W. A. Tome, G. M. Richards, and M. P. Mehta, “Comparison of linac based fractionated stereotactic radiotherapy and tomotherapy treatment plans for skull-base tumors,” Radiotherapy and Oncology, vol. 78, no. 3, pp. 313–321, 2006. View at Publisher · View at Google Scholar · View at PubMed
  81. G. Ozyigit and K. S. C. Chao, “Clinical experience of head-and-neck cancer IMRT with serial tomotherapy,” Medical Dosimetry, vol. 27, no. 2, pp. 91–98, 2002. View at Publisher · View at Google Scholar
  82. A. M. Chen, R. L. Jennelle, R. Sreeraman, et al., “Initial clinical experience with helical tomotherapy for head and neck cancer,” Head and Neck. In press.
  83. D. J. Godfrey, F.-F. Yin, M. Oldham, S. Yoo, and C. Willett, “Digital tomosynthesis with an on-board kilovoltage imaging device,” International Journal of Radiation Oncology Biology Physics, vol. 65, no. 1, pp. 8–15, 2006. View at Publisher · View at Google Scholar · View at PubMed
  84. Q. J. Wu, D. J. Godfrey, Z. Wang, et al., “On-board patient positioning for head-and-neck IMRT: comparing digital tomosynthesis to kilovoltage radiography and cone-beam computed tomography,” International Journal of Radiation Oncology Biology Physics, vol. 69, no. 2, pp. 598–606, 2007. View at Publisher · View at Google Scholar · View at PubMed
  85. T. H. Wagner, S. L. Meeks, F. J. Bova, et al., “Optical tracking technology in stereotactic radiation therapy,” Medical Dosimetry, vol. 32, no. 2, pp. 111–120, 2007. View at Publisher · View at Google Scholar · View at PubMed
  86. B. D. Milliken, S. J. Rubin, R. J. Hamilton, L.S. Johnson, and G. T. Y. Chen, “Performance of a video-image-subtraction-based patient positioning system,” International Journal of Radiation Oncology Biology Physics, vol. 38, no. 4, pp. 855–866, 1997. View at Publisher · View at Google Scholar
  87. L. S. Johnson, B. D. Milliken, S. W. Hadley, C. A. Pelizzari, D. J. Haraf, and G. T. Y. Chen, “Initial clinical experience with a video-based patient positioning system,” International Journal of Radiation Oncology Biology Physics, vol. 45, no. 1, pp. 205–213, 1999. View at Publisher · View at Google Scholar
  88. S. Li, D. Liu, G. Yin, P. Zhuang, and J. Geng, “Real-time 3D-surface-guided head refixation useful for fractionated stereotactic radiotherapy,” Medical Physics, vol. 33, no. 2, pp. 492–503, 2006. View at Publisher · View at Google Scholar
  89. M. Menke, F. Hirschfeld, T. Mack, O. Pastyr, V. Sturm, and W. Schlegel, “Photogrammetric accuracy measurements of head holder systems used for fractionated radiotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 29, no. 5, pp. 1147–1155, 1994.
  90. R. D. Rogus, R. L. Stern, and H. D. Kubo, “Accuracy of a photogrammetry-based patient positioning and monitoring system for radiation therapy,” Medical Physics, vol. 26, no. 5, pp. 721–728, 1999. View at Publisher · View at Google Scholar
  91. S. L. Meeks, F. J. Bova, T. H. Wagner, J. M. Buatti, W. A. Friedman, and K. D. Foote, “Image localization for frameless stereotactic radiotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 46, no. 5, pp. 1291–1299, 2000. View at Publisher · View at Google Scholar
  92. W. A. Tome, S. L. Meeks, T. R. McNutt, et al., “Optically guided intensity modulated radiotherapy,” Radiotherapy and Oncology, vol. 61, no. 1, pp. 33–44, 2001. View at Publisher · View at Google Scholar
  93. F. J. Bova, J. M. Buatti, W. A. Friedman, W. M. Mendenhall, C.-C. Yang, and C. Liu, “The University of Florida frameless high-precision stereotactic radiotherapy system,” International Journal of Radiation Oncology Biology Physics, vol. 38, no. 4, pp. 875–882, 1997. View at Publisher · View at Google Scholar
  94. J.-Y. Jin, F.-F. Yin, S. E. Tenn, P. M. Medin, and T. D. Solberg, “Use of the BrainLAB ExacTrac X-Ray 6D system in image-guided radiotherapy,” Medical Dosimetry, vol. 33, no. 2, pp. 124–134, 2008. View at Publisher · View at Google Scholar · View at PubMed
  95. S. Kim, H. C. Akpati, J. E. Kielbasa, et al., “Evaluation of intrafraction patient movement for CNS and head & neck IMRT,” Medical Physics, vol. 31, no. 3, pp. 500–506, 2004. View at Publisher · View at Google Scholar
  96. S. Kim, H. C. Akpati, J. G. Li, C. R. Liu, R. J. Amdur, and J. R. Palta, “An immobilization system for claustrophobic patients in head-and-neck intensity-modulated radiation therapy,” International Journal of Radiation Oncology Biology Physics, vol. 59, no. 5, pp. 1531–1539, 2004. View at Publisher · View at Google Scholar · View at PubMed
  97. O. A. Zeidan, K. M. Langen, S. L. Meeks, et al., “Evaluation of image-guidance protocols in the treatment of head and neck cancers,” International Journal of Radiation Oncology Biology Physics, vol. 67, no. 3, pp. 670–677, 2007. View at Publisher · View at Google Scholar · View at PubMed
  98. F.-M. Fang, W.-L. Tsai, S.-F. Go, et al., “Implications of quantitative tumor and nodal regression rates for nasopharyngeal carcinomas after 45 Gy of radiotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 50, no. 4, pp. 961–969, 2001. View at Publisher · View at Google Scholar
  99. J. L. Barker Jr., A. S. Garden, K. K. Ang, et al., “Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system,” International Journal of Radiation Oncology Biology Physics, vol. 59, no. 4, pp. 960–970, 2004. View at Publisher · View at Google Scholar · View at PubMed
  100. J. D. Chencharick and K. L. Mossman, “Nutritional consequences of the radiotherapy of head and neck cancer,” Cancer, vol. 51, no. 5, pp. 811–815, 1983.
  101. Y.-C. Kuo, T.-H. Wu, T.-S. Chung, et al., “Effect of regression of enlarged neck lymph nodes on radiation doses received by parotid glands during intensity-modulated radiotherapy for head and neck cancer,” American Journal of Clinical Oncology, vol. 29, no. 6, pp. 600–605, 2006. View at Publisher · View at Google Scholar · View at PubMed
  102. E. K. Hansen, M. K. Bucci, J. M. Quivey, V. Weinberg, and P. Xia, “Repeat CT imaging and replanning during the course of IMRT for head-and-neck cancer,” International Journal of Radiation Oncology Biology Physics, vol. 64, no. 2, pp. 355–362, 2006. View at Publisher · View at Google Scholar · View at PubMed
  103. J. C. O'Daniel, A. S. Garden, D. L. Schwartz, et al., “Parotid gland dose in intensity-modulated radiotherapy for head and neck cancer: is what you plan what you get?” International Journal of Radiation Oncology Biology Physics, vol. 69, no. 4, pp. 1290–1296, 2007. View at Publisher · View at Google Scholar · View at PubMed
  104. C. Lee, K. M. Langen, W. Lu, et al., “Assessment of parotid gland dose changes during head and neck cancer radiotherapy using daily megavoltage computed tomography and deformable image registration,” International Journal of Radiation Oncology Biology Physics, vol. 71, no. 5, pp. 1563–1571, 2008. View at Publisher · View at Google Scholar · View at PubMed
  105. J. A. Langendijk, P. Doornaert, I. M. Verdonck-de Leeuw, C. R. Leemans, N. K. Aaronson, and B. J. Slotman, “Impact of late treatment-related toxicity on quality of life among patients with head and neck cancer treated with radiotherapy,” Journal of Clinical Oncology, vol. 26, no. 22, pp. 3770–3776, 2008. View at Publisher · View at Google Scholar · View at PubMed
  106. M. R. Vergeer, P. A. H. Doornaert, D. H. F. Rietveld, C. R. Leemans, B. J. Slotman, and J. A. Langendijk, “Intensity-modulated radiotherapy reduces radiation-induced morbidity and improves health-related quality of life: results of a nonrandomized prospective study using a standardized follow-up program,” International Journal of Radiation Oncology Biology Physics, vol. 74, no. 1, pp. 1–8, 2009. View at Publisher · View at Google Scholar · View at PubMed
  107. A. I. Blanco, K. S. C. Chao, I. El Naqa, et al., “Dose-volume modeling of salivary function in patients with head-and-neck cancer receiving radiotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 62, no. 4, pp. 1055–1069, 2005. View at Publisher · View at Google Scholar · View at PubMed
  108. M. Vakilha, D. Hwang, S. L. Breen, et al., “Changes in position and size of parotid glands assessed with daily cone-beam CT during image-guided IMRT for head and neck cancer: implications for dose received,” International Journal of Radiation Oncology Biology Physics, vol. 69, pp. S438–S439, 2007.
  109. R. Popovtzer, A. Agrawal, N. A. Kotov, et al., “Targeted gold nanoparticles enable molecular CT imaging of cancer,” Nano Letters, vol. 8, no. 12, pp. 4593–4596, 2008. View at Publisher · View at Google Scholar · View at PubMed
  110. W. Wein, B. Roper, and N. Navab, “Integrating diagnostic B-mode ultrasonography into CT-based radiation treatment planning,” IEEE Transactions on Medical Imaging, vol. 26, no. 6, pp. 866–879, 2007. View at Publisher · View at Google Scholar · View at PubMed
  111. M. Gardner, P. Halimi, D. Valinta, et al., “Use of single MRI and 18F-FDG PET-CT scans in both diagnosis and radiotherapy treatment planning in patients with head and neck cancer: advantage on target volume and critical organ delineation,” Head and Neck, vol. 31, no. 4, pp. 461–467, 2009. View at Publisher · View at Google Scholar · View at PubMed
  112. A. W. Chan and N. J. Liebsch, “Proton radiation therapy for head and neck cancer,” Journal of Surgical Oncology, vol. 97, no. 8, pp. 697–700, 2008. View at Publisher · View at Google Scholar · View at PubMed
  113. A. Lomax, “Intensity modulation methods for proton radiotherapy,” Physics in Medicine and Biology, vol. 44, no. 1, pp. 185–205, 1999. View at Publisher · View at Google Scholar
  114. M. Steneker, A. Lomax, and U. Schneider, “Intensity modulated photon and proton therapy for the treatment of head and neck tumors,” Radiotherapy and Oncology, vol. 80, no. 2, pp. 263–267, 2006. View at Publisher · View at Google Scholar · View at PubMed
  115. B. W. Raaymakers, A. J. E. Raaijmakers, and J. J. W. Lagendijk, “Feasibility of MRI guided proton therapy: magnetic field dose effects,” Physics in Medicine and Biology, vol. 53, no. 20, pp. 5615–5622, 2008. View at Publisher · View at Google Scholar · View at PubMed
  116. C. Vargas, A. Falchook, D. Indelicato, et al., “Proton therapy for prostate cancer treatment employing online image guidance and an action level threshold,” American Journal of Clinical Oncology. In press.