About this Journal Submit a Manuscript Table of Contents
Journal of Oncology
Volume 2009 (2009), Article ID 780874, 9 pages
http://dx.doi.org/10.1155/2009/780874
Research Article

AP-2 Inhibits c-MYC Induced Oxidative Stress and Apoptosis in HaCaT Human Keratinocytes

1Free Radical & Radiation Biology Graduate Program, Radiation Oncology Department, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
2Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA

Received 11 June 2009; Accepted 2 October 2009

Academic Editor: Jörg Kleeff

Copyright © 2009 Lei Yu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Murre, P. S. McCaw, and D. Baltimore, “A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins,” Cell, vol. 56, no. 5, pp. 777–783, 1989. View at Scopus
  2. D. Sakamuro and G. C. Prendergast, “New Myc-interacting proteins: a second Myc network emerges,” Oncogene, vol. 18, no. 19, pp. 2942–2954, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. K. D. Hanson, M. Shichiri, M. R. Follansbee, and J. M. Sedivy, “Effects of c-myc expression on cell cycle progression,” Molecular and Cellular Biology, vol. 14, no. 9, pp. 5748–5755, 1994. View at Scopus
  4. C. A. Spencer and M. Groudine, “Control of c-myc regulation in normal and neoplastic cells,” Advances in Cancer Research, vol. 56, pp. 1–48, 1991. View at Scopus
  5. S. Aulmann, N. Adler, J. Rom, B. Helmchen, P. Schirmacher, and H. P. Sinn, “c-myc amplifications in primary breast carcinomas and their local recurrences,” Journal of Clinical Pathology, vol. 59, no. 4, pp. 424–428, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Pelengaris, M. Khan, and G. Evan, “c-MYC: more than just a matter of life and death,” Nature Reviews Cancer, vol. 2, no. 10, pp. 764–776, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. H.-J. Chung and D. Levens, “c-myc expression: keep the noise down!,” Molecules and Cells, vol. 20, no. 2, pp. 157–166, 2005. View at Scopus
  8. D. S. Askew, J. N. Ihle, and J. L. Cleveland, “Activation of apoptosis associated with enforced Myc expression in myeloid progenitor cells is dominant to the suppression of apoptosis by interleukin-3 or erythropoietin,” Blood, vol. 82, no. 7, pp. 2079–2087, 1993. View at Scopus
  9. G. I. Evan, A. H. Wyllie, C. S. Gilbert, et al., “Induction of apoptosis in fibroblasts by c-myc protein,” Cell, vol. 69, no. 1, pp. 119–128, 1992. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Gallant, Y. Shiio, P. F. Cheng, S. M. Parkhurst, and R. N. Eisenman, “Myc and Max homologs in Drosophila,” Science, vol. 274, no. 5292, pp. 1523–1527, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. C. de La Cova, M. Abril, P. Bellosta, P. Gallant, and L. A. Johnston, “Drosophila myc regulates organ size by inducing cell competition,” Cell, vol. 117, no. 1, pp. 107–116, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. A.-O. Hueber, M. Zörnig, D. Lyon, T. Suda, S. Nagata, and G. I. Evan, “Requirement for the CD95 receptor-ligand pathway in c-Myc-induced apoptosis,” Science, vol. 278, no. 5341, pp. 1305–1309, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Vafa, M. Wade, S. Kern, et al., “c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability,” Molecular Cell, vol. 9, no. 5, pp. 1031–1044, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Sakamuro, V. Eviner, K. J. Elliott, L. Showe, E. White, and G. C. Prendergast, “c-Myc induces apoptosis in epithelial cells by both p53-dependent and p53-independent mechanisms,” Oncogene, vol. 11, no. 11, pp. 2411–2418, 1995. View at Scopus
  15. E. M. Blackwood, B. Luscher, L. Kretzner, and R. N. Eisenman, “The Myc:Max protein complex and cell growth regulation,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 56, pp. 109–117, 1991. View at Scopus
  16. S. Gaubatz, A. Imhof, R. Dosch, et al., “Transcriptional activation by Myc is under negative control by the transcription factor AP-2,” The EMBO Journal, vol. 14, no. 7, pp. 1508–1519, 1995. View at Scopus
  17. K. Hilger-Eversheim, M. Moser, H. Schorle, and R. Buettner, “Regulatory roles of AP-2 transcription factors in vertebrate development, apoptosis and cell-cycle control,” Gene, vol. 260, no. 1-2, pp. 1–12, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Pellikainen, V. Kataja, K. Ropponen, et al., “Reduced nuclear expression of transcription factor AP-2 associates with aggressive breast cancer,” Clinical Cancer Research, vol. 8, no. 11, pp. 3487–3495, 2002. View at Scopus
  19. J. M. W. Gee, J. F. R. Robertson, I. O. Ellis, R. I. Nicholson, and H. C. Hurst, “Immunohistochemical analysis reveals a tumour suppressor-like role for the transcription factor AP-2 in invasive breast cancer,” Journal of Pathology, vol. 189, no. 4, pp. 514–520, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. C.-H. Zhu and F. E. Domann, “Dominant negative interference of transcription factor AP-2 causes inhibition of ErbB-3 expression and suppresses malignant cell growth,” Breast Cancer Research and Treatment, vol. 71, no. 1, pp. 47–57, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Zhu, Y. Huang, C. J. Weydert, L. W. Oberley, and F. E. Domann, “Constitutive activation of transcription factor AP-2 is associated with decreased MnSOD expression in transformed human lung fibroblasts,” Antioxidants and Redox Signaling, vol. 3, no. 3, pp. 387–395, 2001. View at Scopus
  22. S. Grether-Beck, S. Olaizola-Horn, H. Schmitt, et al., “Activation of transcription factor AP-2 mediates UVA radiation-and singlet oxygen-induced expression of the human intercellular adhesion molecule 1 gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 25, pp. 14586–14591, 1996. View at Scopus
  23. K. Ariizumi, P. R. Bergstresser, and A. Takashima, “Wavelength-specific induction of immediate early genes by ultraviolet radiation,” Journal of Dermatological Science, vol. 12, no. 2, pp. 147–155, 1996. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Drobyshevsky, A. M. Robinson, M. Derrick, et al., “Sensory deficits and olfactory system injury detected by novel application of MEMRI in newborn rabbit after antenatal hypoxia-ischemia,” NeuroImage, vol. 32, no. 3, pp. 1106–1112, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Li, P. C. Goswami, and F. E. Domann, “AP-2γ induces p21 expression, arrests cell cycle, and inhibits the tumor growth of human carcinoma cells,” Neoplasia, vol. 8, no. 7, pp. 568–577, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Majello, P. de Luca, G. Suske, and L. Lania, “Differential transcriptional regulation of c-myc promoter through the same DNA binding sites targeted by Sp1-like proteins,” Oncogene, vol. 10, no. 9, pp. 1841–1848, 1995. View at Scopus
  27. T. A. Lehman, R. Modali, P. Boukamp, et al., “p53 mutations in human immortalized epithelial cell lines,” Carcinogenesis, vol. 14, no. 5, pp. 833–839, 1993. View at Scopus
  28. M. Negrini, S. Sabbioni, S. Haldar, et al., “Tumor and growth suppression of breast cancer cells by chromosome 17-associated functions,” Cancer Research, vol. 54, no. 7, pp. 1818–1824, 1994. View at Scopus
  29. L. A. McPherson, A. V. Loktev, and R. J. Weigel, “Tumor suppressor activity of AP2α mediated through a direct interaction with p53,” The Journal of Biological Chemistry, vol. 277, no. 47, pp. 45028–45033, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. C.-H. Zhu, Y. Huang, L. W. Oberley, and F. E. Domann, “A family of AP-2 proteins down-regulate manganese superoxide dismutase expression,” The Journal of Biological Chemistry, vol. 276, no. 17, pp. 14407–14413, 2001. View at Scopus
  31. R. D. Anderson, R. E. Haskell, H. Xia, B. J. Roessler, and B. L. Davidson, “A simple method for the rapid generation of recombinant adenovirus vectors,” Gene Therapy, vol. 7, no. 12, pp. 1034–1038, 2000. View at Scopus
  32. H. Hermeking, C. Rago, M. Schuhmacher, et al., “Identification of CDK4 as a target of c-MYC,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 5, pp. 2229–2234, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Boukamp, R. T. Petrussevska, D. Breitkreutz, J. Hornung, A. Markham, and N. E. Fusenig, “Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line,” Journal of Cell Biology, vol. 106, no. 3, pp. 761–771, 1988. View at Scopus
  34. A. Keller, A. Mohamed, S. Dröse, U. Brandt, I. Fleming, and R. P. Brandes, “Analysis of dichlorodihydrofluorescein and dihydrocalcein as probes for the detection of intracellular reactive oxygen species,” Free Radical Research, vol. 38, no. 12, pp. 1257–1267, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Yu and F. E. Domann, “Rapid and direct quantitative RT-PCR method to measure promoter activity,” Biotechnology Progress, vol. 22, no. 5, pp. 1461–1463, 2006. View at Publisher · View at Google Scholar · View at Scopus