About this Journal Submit a Manuscript Table of Contents
Journal of Oncology
Volume 2010 (2010), Article ID 232831, 10 pages
http://dx.doi.org/10.1155/2010/232831
Research Article

Tumor-Stromal Interactions Influence Radiation Sensitivity in Epithelial- versus Mesenchymal-Like Prostate Cancer Cells

1Department of Urology, Emory School of Medicine, Atlanta, GA 30311, USA
2Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
3Department of Biology and Center for Cancer Research, Tuskegee University, Carver Research Foundation, Tuskegee, AL 36088, USA
4Department of Radiation Oncology, Emory School of Medicine, Atlanta, GA 30322, USA
5Department of Biology, Georgia State University, Atlanta, GA 30303, USA

Received 15 March 2010; Revised 12 May 2010; Accepted 12 May 2010

Academic Editor: Claudia D. Andl

Copyright © 2010 Sajni Josson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. F. Chambers, A. C. Groom, and I. C. MacDonald, “Dissemination and growth of cancer cells in metastatic sites,” Nature Reviews Cancer, vol. 2, no. 8, pp. 563–572, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. P. M. Comoglio and L. Trusolino, “Invasive growth: from development to metastasis,” Journal of Clinical Investigation, vol. 109, no. 7, pp. 857–862, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. Veltmaat, C. C. Orelio, D. Ward-Van Oostwaard, M. A. Van Rooijen, C. L. Mummery, and L. H. K. Defize, “Snail is an immediate early target gene of parathyroid hormone related peptide signaling in parietal endoderm formation,” The International Journal of Developmental Biology, vol. 44, no. 3, pp. 297–307, 2000. View at Scopus
  4. B. Ciruna and J. Rossant, “FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak,” Developmental Cell, vol. 1, no. 1, pp. 37–49, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. J. C. Machado, C. Oliveira, R. Carvalho et al., “E-cadherin gene (CDH1) promoter methylation as the second hit in sporadic diffuse gastric carcinoma,” Oncogene, vol. 20, no. 12, pp. 1525–1528, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. J. P. Thiery, “Epithelial-mesenchymal transitions in tumor progression,” Nature Reviews Cancer, vol. 2, no. 6, pp. 442–454, 2002. View at Scopus
  7. R. C. Bates and A. M. Mercurio, “The epithelial-mesenchymal transition (EMT) and colorectal cancer progression,” Cancer Biology and Therapy, vol. 4, no. 4, pp. 365–370, 2005. View at Scopus
  8. T. Brabletz, A. Jung, S. Reu et al., “Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 18, pp. 10356–10361, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. I. Poser, D. Domínguez, A. G. de Herreros, A. Varnai, R. Buettner, and A. K. Bosserhoff, “Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail,” The Journal of Biological Chemistry, vol. 276, no. 27, pp. 24661–24666, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. A. M. Lowy, J. Knight, and J. Groden, “Restoration of E-cadherin/β-catenin expression in pancreatic cancer cells inhibits growth by induction of apoptosis,” Surgery, vol. 132, no. 2, pp. 141–148, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Strathdee, “Epigenetic versus genetic alterations in the inactivation of E-cadherin,” Seminars in Cancer Biology, vol. 12, no. 5, pp. 373–379, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Yates, C. R. Shepard, G. Papworth et al., “Novel three-dimensional organotypic liver bioreactor to directly visualize early events in metastatic progression,” Advances in Cancer Research, vol. 97, pp. 225–246, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. C. Yates, C. R. Shepard, D. B. Stolz, and A. Wells, “Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin,” British Journal of Cancer, vol. 96, no. 8, pp. 1246–1252, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Saha, B. Chaiwun, S. S. Imam et al., “Overexpression of E-cadherin protein in metastatic breast cancer cells in bone,” Anticancer Research, vol. 27, no. 6 B, pp. 3903–3908, 2007. View at Scopus
  15. H. S. Oh, A. Moharita, J. G. Potian et al., “Bone marrow stroma influences transforming growth factor-β production in breast cancer cells to regulate c-myc activation of the preprotachykinin-I gene in breast cancer cells,” Cancer Research, vol. 64, no. 17, pp. 6327–6336, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. N. A. Bhowmick and H. L. Moses, “Tumor-stroma interactions,” Current Opinion in Genetics and Development, vol. 15, no. 1, pp. 97–101, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. M. L. Ackland, D. F. Newgreen, M. Fridman et al., “Epidermal growth factor-induced epithelio-mesenchymal transition in human breast carcinoma cells,” Laboratory Investigation, vol. 83, no. 3, pp. 435–448, 2003. View at Scopus
  18. C. D. Andl, T. Mizushima, H. Nakagawa et al., “Epidermal growth factor receptor mediates increased cell proliferation, migration, and aggregation in esophageal keratinocytes in vitro and in vivo,” The Journal of Biological Chemistry, vol. 278, no. 3, pp. 1824–1830, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. A. P. Armstrong, R. E. Miller, J. C. Jones, J. Zhang, E. T. Keller, and W. C. Dougall, “RANKL acts directly on RANK-expressing prostate tumor cells and mediates migration and expression of tumor metastasis genes,” Prostate, vol. 68, no. 1, pp. 92–104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. V. A. Odero-Marah, R. Wang, G. Chu et al., “Receptor activator of NF-κB Ligand (RANKL) expression is associated with epithelial to mesenchymal transition in human prostate cancer cells,” Cell Research, vol. 18, no. 8, pp. 858–870, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. D. Mason, G. Davies, and W. G. Jiang, “Cell adhesion molecules and adhesion abnormalities in prostate cancer,” Critical Reviews in Oncology/Hematology, vol. 41, no. 1, pp. 11–28, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Qian, T. Karpova, A. M. Sheppard, J. McNally, and D. R. Lowy, “E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases,” The EMBO Journal, vol. 23, no. 8, pp. 1739–1748, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. S. K. Green, M. C. I. Karlsson, J. V. Ravetch, and R. S. Kerbel, “Disruption of cell-cell adhesion enhances antibody-dependent cellular cytotoxicity: implications for antibody-based therapeutics of cancer,” Cancer Research, vol. 62, no. 23, pp. 6891–6900, 2002. View at Scopus
  24. H. E. Zhau, C.-L. Li, and L. W. K. Chung, “Establishment of human prostate carcinoma skeletal metastasis models,” Cancer, vol. 88, no. 12, pp. 2995–3001, 2000. View at Scopus
  25. J. Xu, R. Wang, Z. H. Xie et al., “Prostate cancer metastasis: role of the host microenvironment in promoting epithelial to mesenchymal transition and increased bone and adrenal gland metastasis,” Prostate, vol. 66, no. 15, pp. 1664–1673, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. H. He, X. Yang, A. J. Davidson et al., “Progressive epithelial to mesenchymal transitions in ARCaPE prostate cancer cells during xenograft tumor formation and metastasis,” Prostate, vol. 70, no. 5, pp. 518–528, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. H. E. Zhau, V. Odero-Marah, H.-W. Lue et al., “Epithelial to mesenchymal transition (EMT) in human prostate cancer: lessons learned from ARCaP model,” Clinical & Experimental Metastasis, vol. 25, no. 6, pp. 601–610, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Wells, C. Yates, and C. R. Shepard, “E-cadherin as an indicator of mesenchymal to epithelial reverting transitions during the metastatic seeding of disseminated carcinomas,” Clinical & Experimental Metastasis, vol. 25, no. 6, pp. 621–628, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Saha, P. Kaur, D. Tsao-Wei et al., “Unmethylated E-cadherin gene expressionis significantly associated with metastatic human prostate cancer cells in bone,” Prostate, vol. 68, no. 15, pp. 1681–1688, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. L.-N. Li, H.-D. Zhang, S.-J. Yuan, D.-X. Yang, L. Wang, and Z.-X. Sun, “Differential sensitivity of colorectal cancer cell lines to artesunate is associated with expression of beta-catenin and E-cadherin,” European Journal of Pharmacology, vol. 588, no. 1, pp. 1–8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. S.-Y. Sung, C.-L. Hsieh, A. Law et al., “Coevolution of prostate cancer and bone stroma in three-dimensional coculture: implications for cancer growth and metastasis,” Cancer Research, vol. 68, no. 23, pp. 9996–10003, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. A. R. Howlett, N. Bailey, C. Damsky, O. W. Petersen, and M. J. Bissell, “Cellular growth and survival are mediated by β1 integrins in normal human breast eqithelium but not in breast carcinoma,” Journal of Cell Science, vol. 108, no. 5, pp. 1945–1957, 1995. View at Scopus
  33. M. Fornaro, J. Plescia, S. Chheang et al., “Fibronectin protects prostate cancer cells from tumor necrosis factor-α-induced apoptosis via the AKT/survivin pathway,” The Journal of Biological Chemistry, vol. 278, no. 50, pp. 50402–50411, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Li, K. Satyamoorthy, and M. Herlyn, “N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells,” Cancer Research, vol. 61, no. 9, pp. 3819–3825, 2001. View at Scopus
  35. K. Bisanz, J. Yu, M. Edlund et al., “Targeting ECM-integrin interaction with liposome-encapsulated small interfering RNAs inhibits the growth of human prostate cancer in a bone xenograft imaging model,” Molecular Therapy, vol. 12, no. 4, pp. 634–643, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. M. A. Rubin, N. R. Mucci, J. Figurski, A. Fecko, K. J. Pienta, and M. L. Day, “E-cadherin expression in prostate cancer: a broad survey using high-density tissue microarray technology,” Human Pathology, vol. 32, no. 7, pp. 690–697, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. H. He, X. Yang, A. J. Davidson et al., “Progressive epithelial to mesenchymal transitions in ARCaPE prostate cancer cells during xenograft tumor formation and metastasis,” The Prostate, vol. 70, no. 5, pp. 518–528, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. C. L. Chaffer, J. P. Brennan, J. L. Slavin, T. Blick, E. W. Thompson, and E. D. Williams, “Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2,” Cancer Research, vol. 66, no. 23, pp. 11271–11278, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. K. K. Tsai, J. Stuart, Y. Y. Chuang, J. B. Little, and Z. M. Yuan, “Low-dose radiation-induced senescent stromal fibroblasts render nearby breast cancer cells radioresistant,” Radiation Research, vol. 172, no. 3, pp. 306–313, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. L. E. Lamb, B. S. Knudsen, and C. K. Miranti, “E-cadherin-mediated survival of androgen-receptor-expressing secretory prostate epithelial cells derived from a stratified in vitro differentiation model,” Journal of Cell Science, vol. 123, no. 2, pp. 266–276, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Matsuo, H. Sakurai, Y. Ueno, O. Ohtani, and I. Saiki, “Activation of MEK/ERK and PI3K/Akt pathways by fibronectin requires integrin αv-mediated ADAM activity in hepatocellular carcinoma: a novel functional target for gefitinib,” Cancer Science, vol. 97, no. 2, pp. 155–162, 2006. View at Publisher · View at Google Scholar · View at Scopus