About this Journal Submit a Manuscript Table of Contents
Journal of Oncology
Volume 2010 (2010), Article ID 414676, 11 pages
http://dx.doi.org/10.1155/2010/414676
Review Article

Targeting the EGF Receptor for Ovarian Cancer Therapy

1Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131-0001, USA
2Department of Obstetrics and Gynecology, School of Medicine, University of New Mexico, Albuquerque, NM 87131-0001, USA
3Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA

Received 15 June 2009; Accepted 11 September 2009

Academic Editor: Maurie M. Markman

Copyright © 2010 Reema Zeineldin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, R. Siegel, E. Ward, et al., “Cancer statistics, 2008,” CA: Cancer Journal for Clinicians, vol. 58, no. 2, pp. 71–96, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. R. C. Bast Jr., B. Hennessy, and G. B. Mills, “The biology of ovarian cancer: new opportunities for translation,” Nature Reviews Cancer, vol. 9, no. 6, pp. 415–428, 2009. View at Scopus
  3. R. Scully, R. Young, and P. Clement, “Tumors of the ovary, maldeveloped gonads, fallopian tube, and broad ligament,” in Atlas of Tumor Pathology, J. Rosia and L. Sobin, Eds., vol. Fascicle 23, Armed Forces Institute of Pathlogy, Washington, DC, USA, 1998.
  4. T. A. Yap, C. P. Carden, and S. B. Kaye, “Beyond chemotherapy: targeted therapies in ovarian cancer,” Nature Reviews Cancer, vol. 9, no. 3, pp. 167–181, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000. View at Scopus
  6. J. Condeelis, R. H. Singer, and J. E. Segall, “The great escape: when cancer cells hijack the genes for chemotaxis and motility,” Annual Review of Cell and Developmental Biology, vol. 21, pp. 695–718, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. J. Wieduwilt and M. M. Moasser, “The epidermal growth factor receptor family: biology driving targeted therapeutics,” Cellular and Molecular Life Sciences, vol. 65, no. 10, pp. 1566–1584, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Mendelsohn and J. Baselga, “Epidermal growth factor receptor targeting in cancer,” Seminars in Oncology, vol. 33, no. 4, pp. 369–385, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Zhang, A. Berezov, Q. Wang, et al., “ErbB receptors: from oncogenes to targeted cancer therapies,” Journal of Clinical Investigation, vol. 117, no. 8, pp. 2051–2058, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. E. M. Bublil and Y. Yarden, “The EGF receptor family: spearheading a merger of signaling and therapeutics,” Current Opinion in Cell Biology, vol. 19, no. 2, pp. 124–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. B. Johnston, S. Navaratnam, M. W. Pitz, et al., “Targeting the EGFR pathway for cancer therapy,” Current Medicinal Chemistry, vol. 13, no. 29, pp. 3483–3492, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Ciardiello and G. Tortora, “EGFR antagonists in cancer treatment,” The New England Journal of Medicine, vol. 358, no. 11, pp. 1160–1174, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Linggi and G. Carpenter, “ErbB receptors: new insights on mechanisms and biology,” Trends in Cell Biology, vol. 16, no. 12, pp. 649–656, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Citri and Y. Yarden, “EGF-ERBB signalling: towards the systems level,” Nature Reviews Molecular Cell Biology, vol. 7, no. 7, pp. 505–516, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. M. Lafky, J. A. Wilken, A. T. Baron, and N. J. Maihle, “Clinical implications of the ErbB/epidermal growth factor (EGF) receptor family and its ligands in ovarian cancer,” Biochimica et Biophysica Acta, vol. 1785, no. 2, pp. 232–265, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Normanno, A. De Luca, C. Bianco, et al., “Epidermal growth factor receptor (EGFR) signaling in cancer,” Gene, vol. 366, no. 1, pp. 2–16, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Sibilia, R. Kroismayr, B. M. Lichtenberger, A. Natarajan, M. Hecking, and M. Holcmann, “The epidermal growth factor receptor: from development to tumorigenesis,” Differentiation, vol. 75, no. 9, pp. 770–787, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Auersperg, A. S. T. Wong, K.-C. Choi, S. K. Kang, and P. C. K. Leung, “Ovarian surface epithelium: biology, endocrinology, and pathology,” Endocrine Reviews, vol. 22, no. 2, pp. 255–288, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Conti, M. Hsieh, J.-Y. Park, and Y.-Q. Su, “Role of the epidermal growth factor network in ovarian follicles,” Molecular Endocrinology, vol. 20, no. 4, pp. 715–723, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Ben-Ami, S. Freimann, L. Armon, A. Dantes, R. Ron-El, and A. Amsterdam, “Novel function of ovarian growth factors: combined studies by DNA microarray, biochemical and physiological approaches,” Molecular Human Reproduction, vol. 12, no. 7, pp. 413–419, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. K. C. Choi and N. Auersperg, “The ovarian surface epithelium: simple source of a complex disease,” Minerva Ginecologica, vol. 55, no. 4, pp. 297–314, 2003. View at Scopus
  22. H. Naora, “The heterogeneity of epithelial ovarian cancers: reconciling old and new paradigms,” Expert Reviews in Molecular Medicine, vol. 9, no. 13, pp. 1–12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. A. S. Wong and N. Auersperg, “Normal ovarian surface epithelium.,” Cancer Treatment and Research, vol. 107, pp. 161–183, 2002. View at Scopus
  24. H. Lassus, H. Sihto, A. Leminen, et al., “Gene amplification, mutation, and protein expression of EGFR and mutations of ERBB2 in serous ovarian carcinoma,” Journal of Molecular Medicine, vol. 84, no. 8, pp. 671–681, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Stadlmann, U. Gueth, U. Reiser, et al., “Epithelial growth factor receptor status in primary and recurrent ovarian cancer,” Modern Pathology, vol. 19, no. 4, pp. 607–610, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. I. Dimova, B. Zaharieva, S. Raitcheva, R. Dimitrov, N. Doganov, and D. Toncheva, “Tissue microarray analysis of EGFR and erbB2 copy number changes in ovarian tumors,” International Journal of Gynecological Cancer, vol. 16, no. 1, pp. 145–151, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. I. Amit, R. Wides, and Y. Yarden, “Evolvable signaling networks of receptor tyrosine kinases: relevance of robustness to malignancy and to cancer therapy,” Molecular Systems Biology, vol. 3, p. 151, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Zandi, A. B. Larsen, P. Andersen, M.-T. Stockhausen, and H. S. Poulsen, “Mechanisms for oncogenic activation of the epidermal growth factor receptor,” Cellular Signalling, vol. 19, no. 10, pp. 2013–2023, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. D. J. Riese II, R. M. Gallo, and J. Settleman, “Mutational activation of ErbB family receptor tyrosine kinases: insights into mechanisms of signal transduction and tumorigenesis,” BioEssays, vol. 29, no. 6, pp. 558–565, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Psyrri, M. Kassar, Z. Yu, et al., “Effect of epidermal growth factor receptor expression level on survival in patients with epithelial ovarian cancer,” Clinical Cancer Research, vol. 11, no. 24, pp. 8637–8643, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. A. P. G. Crijns, H. M. Boezen, J. P. Schouten, et al., “Prognostic factors in ovarian cancer: current evidence and future prospects,” European Journal of Cancer, Supplement, vol. 1, no. 6, pp. 127–145, 2003, ECCO 12 Education Book. View at Publisher · View at Google Scholar · View at Scopus
  32. P. de Graeff, A. P. G. Crijns, K. A. Ten Hoor, et al., “The ErbB signalling pathway: protein expression and prognostic value in epithelial ovarian cancer,” British Journal of Cancer, vol. 99, no. 2, pp. 341–349, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. E. M. Posadas, M. S. Liel, V. Kwitkowski, et al., “A phase II and pharmacodynamic study of gefitinib in patients with refractory or recurrent epithelial ovarian cancer,” Cancer, vol. 109, no. 7, pp. 1323–1330, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. K. D. Cowden Dahl, J. Symowicz, Y. Ning, et al., “Matrix metalloproteinase 9 is a mediator of epidermal growth factor-dependent E-cadherin loss in ovarian carcinoma cells,” Cancer Research, vol. 68, no. 12, pp. 4606–4613, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. C. H. Siemens and N. Auersperg, “Serial propagation of human ovarian surface epithelium in tissue culture,” Journal of Cellular Physiology, vol. 134, no. 3, pp. 347–356, 1988. View at Scopus
  36. A. Abdollahi, B. N. Gruver, C. Patriotis, and T. C. Hamilton, “Identification of epidermal growth factor-responsive genes in normal rat ovarian surface epithelial cells,” Biochemical and Biophysical Research Communications, vol. 307, no. 1, pp. 188–197, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. L. G. Hudson, R. Zeineldin, M. Silberberg, and M. S. Stack, “Activated epidermal growth factor receptor in ovarian cancer,” Cancer Treatment and Research. In press.
  38. M. V. Barbolina, N. M. Moss, S. D. Westfall, et al., “Microenvironmental regulation of ovarian cancer metastasis,” Cancer Treatment and Research. In press.
  39. E. D. Hay, “EMT concept and examples from the vertebrate embryo,” in Rise and Fall of Epithelial Phenotype: Concepts of Epithelial-Mesenchymal Transition, P. Savagner, Ed., pp. 111–134, Springer, Berlin, Germany, 2005.
  40. M. A. Huber, N. Kraut, and H. Beug, “Molecular requirements for epithelial-mesenchymal transition during tumor progression,” Current Opinion in Cell Biology, vol. 17, no. 5, pp. 548–558, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. V. L. Van Marck and M. E. Bracke, “Epithelial-mesenchymal transitions in human cancer,” in Rise and Fall of Epithelial Phenotype: Concepts of Epithelial-Mesenchymal Transition, P. Savagner, Ed., pp. 111–134, Springer, Berlin, Germany, 2005.
  42. M. Guarino, B. Rubino, and G. Ballabio, “The role of epithelial-mesenchymal transition in cancer pathology,” Pathology, vol. 39, no. 3, pp. 305–318, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. J. C. Tse and R. Kalluri, “Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment,” Journal of Cellular Biochemistry, vol. 101, no. 4, pp. 816–829, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. L. G. Hudson, R. Zeineldin, and M. S. Stack, “Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression,” Clinical and Experimental Metastasis, vol. 25, no. 6, pp. 643–655, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. L. G. Hudson, N. M. Moss, and M. S. Stack, “Epidermal growth factor receptor regulation of matrix metalloproteinases in epithelial ovarian carcinoma future,” Oncology Reviews. In press.
  46. M. Sabbah, S. Emami, G. Redeuilh, et al., “Molecular signature and therapeutic perspective of the epithelial-to-mesenchymal transitions in epithelial cancers,” Drug Resistance Updates, vol. 11, no. 4-5, pp. 123–151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. M. J. Palayekar and T. J. Herzog, “The emerging role of epidermal growth factor receptor inhibitors in ovarian cancer,” International Journal of Gynecological Cancer, vol. 18, no. 5, pp. 879–890, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. R. J. Schilder, M. W. Sill, R. B. Lee, et al., “Phase II evaluation of imatinib mesylate in the treatment of recurrent or persistent epithelial ovarian or primary peritoneal carcinoma: a gynecologic oncology group study,” Journal of Clinical Oncology, vol. 26, no. 20, pp. 3418–3425, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Campos, O. Hamid, M. V. Seiden, et al., “Multicenter, randomized phase II trial of oral CI-1033 for previously treated advanced ovarian cancer,” Journal of Clinical Oncology, vol. 23, no. 24, pp. 5597–5604, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. A. A. Secord, J. A. Blessing, D. K. Armstrong, et al., “Phase II trial of cetuximab and carboplatin in relapsed platinum-sensitive ovarian cancer and evaluation of epidermal growth factor receptor expression: a gynecologic oncology group study,” Gynecologic Oncology, vol. 108, pp. 493–499, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. M. V. Seiden, H. A. Burris, U. Matulonis, et al., “A phase II trial of EMD72000 (matuzumab), a humanized anti-EGFR monoclonal antibody, in patients with platinum-resistant ovarian and primary peritoneal malignancies,” Gynecologic Oncology, vol. 104, no. 3, pp. 727–731, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. S. E. Rivkin, C. Muller, D. Iriarte, J. Arthur, A. Canoy, and H. Reid, “Phase I/II lapatinib plus Carboplatin and paclitaxel in stage III or IV relapsed ovarian cancer patients,” Journal of Clinical Oncology, vol. 26, supplement, p. 5556, 2008.
  53. M. S. Gordon, D. Matei, C. Aghajanian, et al., “Clinical activity of pertuzumab (rhuMAb 2C4), a HER dimerization inhibitor, in advanced ovarian cancer: potential predictive relationship with tumor HER2 activation status,” Journal of Clinical Oncology, vol. 24, no. 26, pp. 4324–4332, 2006, Erratum in Journal of Clinical Oncology, vol. 26, no. 16, p. 2793, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Amler, S. Makhija, T. Januario, et al., “Downregulation of HER3 may predict clinical benefits in ovarian cancer from pertuzumab, a HER2 dimerization-inhibiting antibody,” in Proceedings of the Annual Meeting of the American Society of Clinical Oncology (ASCO '08), 2008, abstract 25.
  55. S. B. Kaye, C. J. Poole, M. Bidzinksi, et al., “A randomized phase II study evaluating the combination of Carboplatin-based chemotherapy with pertuzumab (P) vs. Carboplatin-based therapy alone in patients with relapsed, platinum sensitive ovarian cancer,” Journal of Clinical Oncology, vol. 26, supplement, p. 5520, 2008.
  56. M. Bach, P. Holig, E. Schlosser, et al., “Isolation from phage display libraries of lysine-deficient human epidermal growth factor variants for directional conjugation as targeting ligands,” Protein Engineering, vol. 16, no. 12, pp. 1107–1113, 2003. View at Scopus
  57. S. Song, D. Liu, J. Peng, et al., “Novel peptide ligand directs liposomes toward EGF-R high-expressing cancer cells in vitro and in vivo,” The FASEB Journal, vol. 23, pp. 1396–1404, 2009.
  58. Z. Li, R. Zhao, X. Wu, et al., “Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics,” The FASEB Journal, vol. 19, no. 14, pp. 1978–1985, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. M. A. Pantaleo, M. Nannini, A. Maleddu, et al., “Experimental results and related clinical implications of PET detection of epidermal growth factor receptor (EGFr) in cancer,” Annals of Oncology, vol. 20, no. 2, pp. 213–226, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Carlsson, Z. P. Ren, K. Wester, et al., “Planning for intracavitary anti-EGFR radionuclide therapy of gliomas. Literature review and data on EGFR expression,” Journal of Neuro-Oncology, vol. 77, no. 1, pp. 33–45, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Olsson, L. Gedda, H. Goike, et al., “Uptake of a boronated epidermal growth factor-dextran conjugate in CHO xenografts with and without human EGF-receptor expression,” Anti-Cancer Drug Design, vol. 13, no. 4, pp. 279–289, 1998. View at Scopus
  62. R. F. Barth, W. Yang, and J. A. Coderre, “Rat brain tumor models to assess the efficacy of boron neutron capture therapy: a critical evaluation,” Journal of Neuro-Oncology, vol. 62, no. 1-2, pp. 61–74, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. W. Yang, R. F. Barth, G. Wu, W. Tjarks, P. Binns, and K. Riley, “Boron neutron capture therapy of EGFR or EGFRvIII positive gliomas using either boronated monoclonal antibodies or epidermal growth factor as molecular targeting agents,” Applied Radiation and Isotopes, vol. 67, no. 7-8, pp. S328–S331, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. W. Cai, G. Niu, and X. Chen, “Multimodality imaging of the HER-kinase axis in cancer,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 35, no. 1, pp. 186–208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. A. A. Rosenkranz, G. Vaidyanathan, O. R. Pozzi, V. G. Lunin, M. R. Zalutsky, and A. S. Sobolev, “Engineered modular recombinant transporters: application of new platform for targeted radiotherapeutic agents to alpha-particle emitting 211 At,” International Journal of Radiation Oncology Biology Physics, vol. 72, no. 1, pp. 193–200, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. B. Schechter, R. Arnon, M. Wilchek, et al., “Indirect immunotargeting of cis-Pt to human epidermoid carcinoma KB using the avidin-biotin system,” International Journal of Cancer, vol. 48, no. 2, pp. 167–172, 1991. View at Scopus
  67. S. V. Lutsenko, N. B. Feldman, and S. E. Severin, “Cytotoxic and antitumor activities of doxorubicin conjugates with the epidermal growth factor and its receptor-binding fragment,” Journal of Drug Targeting, vol. 10, no. 7, pp. 567–571, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Vega, S. Ke, Z. Fan, S. Wallace, C. Charsangavej, and C. Li, “Targeting doxorubicin to epidermal growth factor receptors by site-specific conjugation of C225 to poly(L-glutamic acid) through a polyethylene glycol spacer,” Pharmaceutical Research, vol. 20, no. 5, pp. 826–832, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. S. V. Lutsenko, N. B. Feldman, G. V. Finakova, et al., “Antitumor activity of alpha fetoprotein and epidermal growth factor conjugates in vitro and in vivo,” Tumor Biology, vol. 21, no. 6, pp. 367–374, 2000. View at Scopus
  70. F. M. Uckun, R. K. Narla, X. Jun, et al., “Cytotoxic activity of epidermal growth factor-genistein against breast cancer cells,” Clinical Cancer Research, vol. 4, no. 4, pp. 901–912, 1998. View at Scopus
  71. F. M. Uckun, R. K. Narla, T. Zeren, et al., “In vivo toxicity, pharmacokinetics, and anticancer activity of Genistein linked to recombinant human epidermal growth factor,” Clinical Cancer Research, vol. 4, no. 5, pp. 1125–1134, 1998. View at Scopus
  72. I. Pastan, R. Hassan, D. J. FitzGerald, and R. J. Kreitman, “Immunotoxin therapy of cancer,” Nature Reviews Cancer, vol. 6, no. 7, pp. 559–565, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. U. Bermbach and H. Faulstich, “Epidermal growth factor labeled β-amanitin-poly-L-ornithine: preparation and evidence for specific cytotoxicity,” Biochemistry, vol. 29, no. 29, pp. 6839–6845, 1990. View at Publisher · View at Google Scholar · View at Scopus
  74. N. Hirota, M. Ueda, S. Ozawa, O. Abe, and N. Shimizu, “Suppression of an epidermal growth factor receptor-hyperproducing tumor by an immunotoxin conjugate of gelonin and a monoclonal anti-epidermal growth factor receptor antibody,” Cancer Research, vol. 49, no. 24, part 1, pp. 7106–7109, 1989. View at Scopus
  75. D. B. Cawley, H. R. Herschman, D. G. Gilliland, and R. J. Collier, “Epidermal growth factor-toxin A chain conjugates: EGF-ricin A is a potent toxin while EGF-diphtheria fragment A is nontoxic,” Cell, vol. 22, no. 2, pp. 563–570, 1980. View at Scopus
  76. H. Masui, H. Kamrath, G. Apell, L. L. Houston, and J. Mendelsohn, “Cytotoxicity against human tumor cells mediated by the conjugate of anti-epidermal growth factor receptor monoclonal antibody to recombinant ricin A chain,” Cancer Research, vol. 49, no. 13, pp. 3482–3488, 1989. View at Scopus
  77. D. L. Simpson, D. B. Cawley, and H. R. Herschman, “Killing of cultured hepatocytes by conjugates of asialofetuin and EGF linked to the A chains of ricin or diphtheria toxin,” Cell, vol. 29, no. 2, pp. 469–473, 1982. View at Scopus
  78. R. Taetle, J. M. Honeysett, and L. L. Houston, “Effects of anti-epidermal growth factor (EGF) receptor antibodies and an anti-EGF receptor recombinant-Ricin A chain immunoconjugate on growth of human cells,” Journal of the National Cancer Institute, vol. 80, no. 13, pp. 1053–1059, 1988. View at Scopus
  79. H. Jinno, M. Ueda, S. Ozawa, et al., “Epidermal growth factor receptor-dependent cytotoxic effect by an EGF-ribonuclease conjugate on human cancer cell lines: a trial for less immunogenic chimeric toxin,” Cancer Chemotherapy and Pharmacology, vol. 38, no. 4, pp. 303–308, 1996. View at Publisher · View at Google Scholar · View at Scopus
  80. T. Suwa, M. Ueda, H. Jinno, et al., “Epidermal growth factor receptor-dependent cytotoxic effect of anti-EGFR antibody-ribonuclease conjugate on human cancer cells,” Anticancer Research, vol. 19, no. 5, pp. 4161–4165, 1999. View at Scopus
  81. S. Hoshimoto, M. Ueda, H. Jinno, M. Kitajima, J. Futami, and M. Seno, “Mechanisms of the growth-inhibitory effect of the RNase-EGF fused protein against EGFR-overexpressing cells,” Anticancer Research, vol. 26, no. 2, pp. 857–863, 2006. View at Scopus
  82. H. Jinno, M. Ueda, S. Ozawa, et al., “The cytotoxicity of a conjugate composed of human epidermal growth factor and eosinophil cationic protein,” Anticancer Research, vol. 22, no. 6, pp. 4141–4145, 2002. View at Scopus
  83. M. Ueda, K. Psarras, H. Jinno, et al., “Molecular targeting for epidermal growth factor receptor expressed on breast cancer cells by human fusion protein,” Breast Cancer, vol. 4, no. 4, pp. 253–255, 1997.
  84. A. Gijsens and P. de Witte, “Photocytotoxic action of EGF-PVA-Sn(IV)chlorin e6 and EGF-dextran-Sn(IV)chlorin e6 internalizable conjugates on A431 cells,” International Journal of Oncology, vol. 13, no. 6, pp. 1171–1177, 1998. View at Scopus
  85. A. Gijsens, L. Missiaen, W. Merlevede, and P. de Witte, “Epidermal growth factor-mediated targeting of chlorin e6 selectively potentiates its photodynamic activity,” Cancer Research, vol. 60, no. 8, pp. 2197–2202, 2000. View at Scopus
  86. S. V. Lutsenko, N. B. Feldman, G. V. Finakova, et al., “Targeting phthalocyanines to tumor cells using epidermal growth factor conjugates,” Tumor Biology, vol. 20, no. 4, pp. 218–224, 1999. View at Publisher · View at Google Scholar · View at Scopus
  87. A. A. Savitsky, N. V. Gukasova, S. G. Gumanov, et al., “Cytotoxic action of conjugates of α-fetoprotein and epidermal growth factor with photoheme, chlorines, and phthalocyanines,” Biochemistry, vol. 65, no. 6, pp. 732–736, 2000. View at Scopus
  88. J. H. Sampson, G. Akabani, G. E. Archer, et al., “Intracerebral infusion of an EGFR-targeted toxin in recurrent malignant brain tumors,” Neuro-Oncology, vol. 10, no. 3, pp. 320–329, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. J. W. Park, H. Mok, and T. G. Park, “Epidermal growth factor (EGF) receptor targeted delivery of PEGylated adenovirus,” Biochemical and Biophysical Research Communications, vol. 366, no. 3, pp. 769–774, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. J. Chen, S. Gamou, A. Takayanagi, Y. Ohtake, M. Ohtsubo, and N. Shimizu, “Targeted in vivo delivery of therapeutic gene into experimental squamous cell carcinomas using anti-epidermal growth factor receptor antibody: immunogene approach,” Human Gene Therapy, vol. 9, no. 18, pp. 2673–2681, 1998. View at Scopus
  91. R. J. Cristiano, “Epidermal growth factor mediated DNA delivery into lung cancer cells via the epidermal growth factor receptor,” Cancer Gene Therapy, vol. 3, no. 1, pp. 4–10, 1996. View at Scopus
  92. Y. Ohtake, J. Chen, S. Gamou, et al., “Ex vivo delivery of suicide genes into melanoma cells using epidermal growth factor receptor-specific Fab immunogene,” Japanese Journal of Cancer Research, vol. 90, no. 4, pp. 460–468, 1999. View at Scopus
  93. B. Xu, S. Wiehle, J. A. Roth, and R. J. Cristiano, “The contribution of poly-L-lysine, epidermal growth factor and streptavidin to EGF/PLL/DNA polyplex formation,” Gene Therapy, vol. 5, no. 9, pp. 1235–1243, 1998. View at Scopus
  94. J. Chen, S. Gamou, A. Takayanagi, and N. Shimizu, “A novel gene delivery system using EGF receptor-mediated endocytosis,” FEBS Letters, vol. 338, no. 2, pp. 167–169, 1994. View at Publisher · View at Google Scholar · View at Scopus
  95. N. Shimizu, J. Chen, S. Gamou, and A. Takayanagi, “Immunogene approach toward cancer therapy using erythrocyte growth factor receptor-mediated gene delivery,” Cancer Gene Therapy, vol. 3, no. 2, pp. 113–120, 1996. View at Scopus
  96. A. Bonsted, E. Wagner, L. Prasmickaite, A. Hogset, and K. Berg, “Photochemical enhancement of DNA delivery by EGF receptor targeted polyplexes,” Methods in Molecular Biology, vol. 434, pp. 171–181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. J. Kloeckner, L. Prasmickaite, A. Hogset, K. Berg, and E. Wagner, “Photochemically enhanced gene delivery of EGF receptor-targeted DNA polyplexes,” Journal of Drug Targeting, vol. 12, no. 4, pp. 205–213, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. Z. Li, R. Zhao, X. Wu, et al., “Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics,” The FASEB Journal, vol. 19, no. 14, pp. 1978–1985, 2005. View at Publisher · View at Google Scholar · View at Scopus
  99. T. Blessing, M. Kursa, R. Holzhauser, R. Kircheis, and E. Wagner, “Different strategies for formation of PEGylated EGF-conjugated PEI/DNA complexes for targeted gene delivery,” Bioconjugate Chemistry, vol. 12, no. 4, pp. 529–537, 2001. View at Publisher · View at Google Scholar · View at Scopus
  100. M. F. Wolschek, C. Thallinger, M. Kursa, et al., “Specific systemic nonviral gene delivery to human hepatocellular carcinoma xenografts in SCID mice,” Hepatology, vol. 36, no. 5, pp. 1106–1114, 2002. View at Publisher · View at Google Scholar · View at Scopus
  101. J. Kloeckner, S. Boeckle, D. Persson, et al., “DNA polyplexes based on degradable oligoethylenimine-derivatives: combination with EGF receptor targeting and endosomal release functions,” Journal of Controlled Release, vol. 116, no. 2, pp. 115–122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. H. Lee, T. H. Kim, and T. G. Park, “A receptor-mediated gene delivery system using streptavidin and biotin-derivatized, pegylated epidermal growth factor,” Journal of Controlled Release, vol. 83, no. 1, pp. 109–119, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. S. Boeckle, J. Fahrmeir, W. Roedl, M. Ogris, and E. Wagner, “Melittin analogs with high lytic activity at endosomal pH enhance transfection with purified targeted PEI polyplexes,” Journal of Controlled Release, vol. 112, no. 2, pp. 240–248, 2006. View at Publisher · View at Google Scholar · View at Scopus
  104. Y. Koyama, T. Ito, H. Matsumoto, et al., “Novel poly(ethylene glycol) derivatives with carboxylic acid pendant groups: synthesis and their protection and enhancing effect on non-viral gene transfection systems,” Journal of Biomaterials Science, Polymer Edition, vol. 14, no. 6, pp. 515–531, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. Y. Sun, Y. Tang, M. Chu, S. Song, and Y. Xin, “A convenient and adjustable surface-modified complex containing poly-L-glutamic acid conjugatesas a vector for gene delivery,” International Journal of Nanomedicine, vol. 3, no. 2, pp. 249–256, 2008. View at Scopus
  106. O. C. Farokhzad and R. Langer, “Impact of nanotechnology on drug delivery,” ACS Nano, vol. 3, no. 1, pp. 16–20, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. S. Song, D. Liu, J. Peng, et al., “Peptide ligand-mediated liposome distribution and targeting to EGFR expressing tumor in vivo,” International Journal of Pharmaceutics, vol. 363, no. 1-2, pp. 155–161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. J. Beuttler, M. Rothdiener, D. Muller, F. Y. Frejd, and R. E. Kontermann, “Targeting of epidermal growth factor receptor (EGFR)-expressing tumor cells with sterically stabilized affibody liposomes (SAL),” Bioconjugate Chemistry, vol. 20, no. 6, pp. 1201–1208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. S. Song, D. Liu, J. Peng, et al., “Novel peptide ligand directs liposomes toward EGF-R high-expressing cancer cells in vitro and in vivo,” The FASEB Journal, vol. 23, no. 5, pp. 1396–1404, 2009. View at Publisher · View at Google Scholar
  110. E. Bohl Kullberg, N. Bergstrand, J. Carlsson, et al., “Development of EGF-conjugated liposomes for targeted delivery of boronated DNA-binding agents,” Bioconjugate Chemistry, vol. 13, no. 4, pp. 737–743, 2002. View at Publisher · View at Google Scholar · View at Scopus
  111. E. B. Kullberg, M. Nestor, and L. Gedda, “Tumor-cell targeted epidermal growth factor liposomes loaded with boronated acridine: uptake and processing,” Pharmaceutical Research, vol. 20, no. 2, pp. 229–236, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. E. B. Kullberg, Q. Wei, J. Capala, V. Giusti, P.-U. Malmstrom, and L. Gedda, “EGF-receptor targeted liposomes with boronated acridine: growth inhibition of cultured glioma cells after neutron irradiation,” International Journal of Radiation Biology, vol. 81, no. 8, pp. 621–629, 2005. View at Publisher · View at Google Scholar · View at Scopus
  113. C.-L. Tseng, W.-Y. Su, K.-C. Yen, K.-C. Yang, and F.-H. Lin, “The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation,” Biomaterials, vol. 30, no. 20, pp. 3476–3485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. C.-L. Tseng, S. Y.-H. Wu, W.-H. Wang, et al., “Targeting efficiency and biodistribution of biotinylated-EGF-conjugated gelatin nanoparticles administered via aerosol delivery in nude mice with lung cancer,” Biomaterials, vol. 29, no. 20, pp. 3014–3022, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. N. Nitin, D. J. Javier, and R. Richards-Kortum, “Oligonucleotide-coated metallic nanoparticles as a flexible platform for molecular imaging agents,” Bioconjugate Chemistry, vol. 18, no. 6, pp. 2090–2096, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. T. P. Thomas, R. Shukla, A. Kotlyar, et al., “Dendrimer-epidermal growth factor conjugate displays superagonist activity,” Biomacromolecules, vol. 9, no. 2, pp. 603–609, 2008. View at Publisher · View at Google Scholar · View at Scopus
  117. L. A. Howard, K. E. Bullock, J. C. Bendell, et al., “Bevacizumab (B) plus everolimus (E) and panitumumab (P) in refractory advanced solid tumors,” in Proceedings of the Annual Meeting of the American Society of Clinical Oncology (ASCO '09), 2009, abstract 3551.
  118. R. Zeineldin, M. Al-Haik, and L. G. Hudson, “Role of polyethylene glycol integrity in specific receptor targeting of carbon nanotubes to cancer cells,” Nano Letters, vol. 9, no. 2, pp. 751–757, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. R. Sangha, C. Ho, L. Beckett, et al., “Dual epidermal growth factor receptor (EGFR) inhibition: phase I study combining cetuximab (C225) and erlotinib (E) in advanced solid tumors,” in Proceedings of the Annual Meeting of the American Society of Clinical Oncology (ASCO '09), 2009, abstract 3552.
  120. T. M. Feinstein, S. Agrawal, R. G. Stoller, M. J. Egorin, and A. Argiris, “Phase I and pharmacokinetic (PK) study of dasatinib (D) and cetuximab (C) in patients (pts) with advanced solid malignancies,” in Proceedings of the Annual Meeting of the American Society of Clinical Oncology (ASCO '09), 2009, abstract 3540.
  121. J. D. Benson, Y.-N. P. Chen, S. A. Cornell-Kennon, et al., “Validating cancer drug targets,” Nature, vol. 441, no. 7092, pp. 451–456, 2006. View at Publisher · View at Google Scholar · View at Scopus