About this Journal Submit a Manuscript Table of Contents
Journal of Oncology
Volume 2010 (2010), Article ID 458431, 6 pages
http://dx.doi.org/10.1155/2010/458431
Review Article

Histone Deacetylase Inhibitor Therapy in Epithelial Ovarian Cancer

Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Oita 879-5593, Japan

Received 24 March 2009; Revised 6 September 2009; Accepted 13 October 2009

Academic Editor: Charles F. Levenback

Copyright © 2010 Noriyuki Takai and Hisashi Narahara. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Reinhardt, “Gynecologic tumors,” Recent Results in Cancer Research, vol. 170, pp. 141–150, 2008. View at Scopus
  2. P. J. Frederick, J. M. Straughn Jr., R. D. Alvarez, and D. J. Buchsbaum, “Preclinical studies and clinical utilization of monoclonal antibodies in epithelial ovarian cancer,” Gynecologic Oncology, vol. 113, no. 3, pp. 384–390, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. B. D. Strahl and C. D. Allis, “The language of covalent histone modifications,” Nature, vol. 403, no. 6765, pp. 41–45, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. E. Verdin, F. Dequiedt, and H. G. Kasler, “Class II histone deacetylases: versatile regulators,” Trends in Genetics, vol. 19, no. 5, pp. 286–293, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. Q. Zhou, Z. K. Melkoumian, A. Lucktong, M. Moniwa, J. R. Davie, and J. S. Strobl, “Rapid induction of histone hyperacetylation and cellular differentiation in human breast tumor cell lines following degradation of histone deacetylase-1,” Journal of Biological Chemistry, vol. 275, no. 45, pp. 35256–35263, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. T. Jenuwein and C. D. Allis, “Translating the histone code,” Science, vol. 293, no. 5532, pp. 1074–1080, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. J. E. Bolden, M. J. Peart, and R. W. Johnstone, “Anticancer activities of histone deacetylase inhibitors,” Nature Reviews Drug Discovery, vol. 5, no. 9, pp. 769–784, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. W. S. Xu, R. B. Parmigiani, and P. A. Marks, “Histone deacetylase inhibitors: molecular mechanisms of action,” Oncogene, vol. 26, no. 37, pp. 5541–5552, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. N. Takai and H. Narahara, “Human endometrial and ovarian cancer cells: histone deacetylase inhibitors exhibit antiproliferative activity, potently induce cell cycle arrest, and stimulate apoptosis,” Current Medicinal Chemistry, vol. 14, no. 24, pp. 2548–2553, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Ong, S. L. Maines-Bandiera, C. D. Roskelley, and N. Auersperg, “An ovarian adenocarcinoma line derived from SV40/E-cadherin-transfected normal human ovarian surface epithelium,” International Journal of Cancer, vol. 85, no. 3, pp. 430–437, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Takai, N. Kawamata, D. Gui, J. W. Said, I. Miyakawa, and H. P. Koeffler, “Human ovarian carcinoma cells: histone deacetylase inhibitors exhibit antiproliferative activity and potently induce apoptosis,” Cancer, vol. 101, no. 12, pp. 2760–2770, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. J. Sonnemann, J. Gänge, S. Pilz, et al., “Comparative evaluation of the treatment efficacy of suberoylanilide hydroxamic acid (SAHA) and paclitaxel in ovarian cancer cell lines and primary ovarian cancer cells from patients,” BMC Cancer, vol. 6, article 183, pp. 1–9, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. A. L. Cooper, V. L. Greenberg, P. S. Lancaster, J. R. van Nagell Jr., S. G. Zimmer, and S. C. Modesitt, “In vitro and in vivo histone deacetylase inhibitor therapy with suberoylanilide hydroxamic acid (SAHA) and paclitaxel in ovarian cancer,” Gynecologic Oncology, vol. 104, no. 3, pp. 596–601, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. M. Göttlicher, “Valproic acid: an old drug newly discovered as inhibitor of histone deacetylases,” Annals of Hematology, vol. 83, supplement 1, pp. S91–S92, 2004. View at Scopus
  15. C.-T. Lin, H.-C. Lai, H.-Y. Lee, et al., “Valproic acid resensitizes cisplatin-resistant ovarian cancer cells,” Cancer Science, vol. 99, no. 6, pp. 1218–1226, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. N. Takai, T. Ueda, M. Nishida, et al., “CBHA is a family of hybrid polar compounds that inhibit histone deacetylase, and induces growth inhibition, cell cycle arrest and apoptosis in human endometrial and ovarian cancer cells,” Oncology, vol. 70, no. 2, pp. 97–105, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. N. Takai, T. Ueda, M. Nishida, K. Nasu, and H. Narahara, “A novel histone deacetylase inhibitor, Scriptaid, induces growth inhibition, cell cycle arrest and apoptosis in human endometrial cancer and ovarian cancer cells,” International Journal of Molecular Medicine, vol. 17, no. 2, pp. 323–329, 2006. View at Scopus
  18. N. Takai, T. Ueda, M. Nishida, K. Nasu, and H. Narahara, “Anticancer activity of MS-275, a novel histone deacetylase inhibitor, against human endometrial cancer cells,” Anticancer Research, vol. 26, no. 2A, pp. 939–945, 2006. View at Scopus
  19. N. Takai, T. Ueda, M. Nishida, K. Nasu, and H. Narahara, “M344 is a novel synthesized histone deacetylase inhibitor that induces growth inhibition, cell cycle arrest, and apoptosis in human endometrial cancer and ovarian cancer cells,” Gynecologic Oncology, vol. 101, no. 1, pp. 108–113, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. T. Ueda, N. Takai, M. Nishida, K. Nasu, and H. Narahara, “Apicidin, a novel histone deacetylase inhibitor, has profound anti-growth activity in human endometrial and ovarian cancer cells,” International Journal of Molecular Medicine, vol. 19, no. 2, pp. 301–308, 2007. View at Scopus
  21. X. Qian, W. J. LaRochelle, G. Ara, et al., “Activity of PXD101, a histone deacetylase inhibitor, in preclinical ovarian cancer studies,” Molecular Cancer Therapeutics, vol. 5, no. 8, pp. 2086–2095, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. N. H. Chobanian, V. L. Greenberg, J. M. Gass, C. P. Desimone, J. R. van Nagell, and S. G. Zimmer, “Histone deacetylase inhibitors enhance paclitaxel-induced cell death in ovarian cancer cell lines independent of p53 status,” Anticancer Research, vol. 24, no. 2B, pp. 539–545, 2004. View at Scopus
  23. M. Bazzaro, Z. Lin, A. Santillan, et al., “Ubiquitin proteasome system stress underlies synergistic killing of ovarian cancer cells by bortezomib and a novel HDAC6 inhibitor,” Clinical Cancer Research, vol. 14, no. 22, pp. 7340–7347, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. N. Takai, J. C. Desmond, T. Kumagai, et al., “Histone deacetylase inhibitors have a profound antigrowth activity in endometrial cancer cells,” Clinical Cancer Research, vol. 10, no. 3, pp. 1141–1149, 2004. View at Publisher · View at Google Scholar
  25. R. P. Warrell Jr., L.-Z. He, V. Richon, E. Calleja, and P. P. Pandolfi, “Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase,” Journal of the National Cancer Institute, vol. 90, no. 21, pp. 1621–1625, 1998.
  26. H. L. Newmark and C. W. Young, “Butyrate and phenylacetate as differentiating agents: practical problems and opportunities,” Journal of Cellular Biochemistry, vol. 59, supplement 22, pp. 247–253, 1995. View at Publisher · View at Google Scholar
  27. L. H. Camacho, J. Olson, W. P. Tong, C. W. Young, D. R. Spriggs, and M. G. Malkin, “Phase I dose escalation clinical trial of phenylbutyrate sodium administered twice daily to patients with advanced solid tumors,” Investigational New Drugs, vol. 25, no. 2, pp. 131–138, 2007. View at Publisher · View at Google Scholar · View at PubMed
  28. S. C. Modesitt, M. Sill, J. S. Hoffman, and D. P. Bender, “A phase II study of vorinostat in the treatment of persistent or recurrent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group study,” Gynecologic Oncology, vol. 109, no. 2, pp. 182–186, 2008. View at Publisher · View at Google Scholar · View at PubMed
  29. M. H. Shah, P. Binkley, K. Chan, et al., “Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors,” Clinical Cancer Research, vol. 12, no. 13, pp. 3997–4003, 2006. View at Publisher · View at Google Scholar · View at PubMed
  30. M. Candelaria, D. Gallardo-Rincón, C. Arce, et al., “A phase II study of epigenetic therapy with hydralazine and magnesium valproate to overcome chemotherapy resistance in refractory solid tumors,” Annals of Oncology, vol. 18, no. 9, pp. 1529–1538, 2007. View at Publisher · View at Google Scholar · View at PubMed
  31. H. Mackay, H. W. Hirte, A. Covens, et al., “A phase II trial of the histone deacetylase inhibitor belinostat (PXD101) in patients with platinum resistant epithelial ovarian tumors and micropapillary/borderline (LMP) ovarian tumors. A PMH phase II consortium trial,” Journal of Clinical Oncology, vol. 26, no. 15, supplement, 2008, abstract no. 5518.
  32. N. J. Finkler, D. S. Dizon, P. Braly, et al., “Phase II multicenter trial of the histone deactylase inhibitor (HDACi) belinostat, carboplatin and paclitaxel (BelCaP) in patients (pts) with relapsed epithelial ovarian cancer (EOC),” Journal of Clinical Oncology, vol. 26, no. 15, supplement, 2008, abstract no. 5519.