About this Journal Submit a Manuscript Table of Contents
Journal of Oncology
Volume 2010 (2010), Article ID 652320, 12 pages
http://dx.doi.org/10.1155/2010/652320
Review Article

Molecular and Clinical Aspects of Targeting the VEGF Pathway in Tumors

1Department of Medical Oncology, Mater Misericordiae University Hospital, Eccles St, Dublin 7, Ireland
2Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
3Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA

Received 25 November 2009; Accepted 21 April 2010

Academic Editor: Arkadiusz Dudek

Copyright © 2010 Grzegorz Korpanty et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Folkman, “Angiogenesis in cancer, vascular, rheumatoid and other disease,” Nature Medicine, vol. 1, no. 1, pp. 27–31, 1995. View at Scopus
  2. N. Ferrara, “VEGF and the quest for tumour angiogenesis factors,” Nature Reviews Cancer, vol. 2, no. 10, pp. 795–803, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. M. Narazaki and G. Tosato, “Targeting coagulation to the tumor microvasculature: perspectives and therapeutic implications from preclinical studies,” Journal of the National Cancer Institute, vol. 97, no. 10, pp. 705–707, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. B. A. Warren and P. Shubik, “The growth of the blood supply to melanoma transplants in the hamster cheek pouch,” Laboratory Investigation, vol. 15, no. 2, pp. 464–478, 1966. View at Scopus
  5. M. Greenblatt and P. Shubi, “Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparent chamber technique,” Journal of the National Cancer Institute, vol. 41, no. 1, pp. 111–124, 1968. View at Scopus
  6. J. Folkman, E. Merler, C. Abernathy, and G. Williams, “Isolation of a tumor factor responsible or angiogenesis,” Journal of Experimental Medicine, vol. 133, no. 2, pp. 275–288, 1971. View at Scopus
  7. J. Folkman, “Tumor angiogenesis: therapeutic implications,” The New England Journal of Medicine, vol. 285, no. 21, pp. 1182–1186, 1971. View at Scopus
  8. H. Hurwitz, L. Fehrenbacher, and L. Fehrenbacher, “Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer,” The New England Journal of Medicine, vol. 350, no. 23, pp. 2335–2342, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. D. R. Senger, S. J. Galli, A. M. Dvorak, C. A. Perruzzi, V. Susan Harvey, and H. F. Dvorak, “Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid,” Science, vol. 219, no. 4587, pp. 983–985, 1983. View at Scopus
  10. D. W. Leung, G. Cachianes, W.-J. Kuang, D. V. Goeddel, and N. Ferrara, “Vascular endothelial growth factor is a secreted angiogenic mitogen,” Science, vol. 246, no. 4935, pp. 1306–1309, 1989. View at Scopus
  11. P. J. Keck, S. D. Hauser, G. Krivi, K. Sanzo, T. Warren, J. Feder, and D. T. Connolly, “Vascular permeability factor, an endothelial cell mitogen related to PDGF,” Science, vol. 246, no. 4935, pp. 1309–1312, 1989. View at Scopus
  12. N. Ferrara, H.-P. Gerber, and J. LeCouter, “The biology of VEGF and its receptors,” Nature Medicine, vol. 9, no. 6, pp. 669–676, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. H. Takahashi and M. Shibuya, “The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions,” Clinical Science, vol. 109, no. 3, pp. 227–241, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. J. E. Park, H. H. Chen, J. Winer, K. A. Houck, and N. Ferrara, “Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR,” Journal of Biological Chemistry, vol. 269, no. 41, pp. 25646–25654, 1994. View at Scopus
  15. B. Olofsson, E. Korpelainen, and E. Korpelainen, “Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 20, pp. 11709–11714, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Hiratsuka, O. Minowa, J. Kuno, T. Noda, and M. Shibuya, “Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 16, pp. 9349–9354, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Lyden, K. Hattori, and K. Hattori, “Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth,” Nature Medicine, vol. 7, no. 11, pp. 1194–1201, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. G.-H. Fong, J. Rossant, M. Gertsenstein, and M. L. Breitman, “Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium,” Nature, vol. 376, no. 6535, pp. 66–70, 1995. View at Scopus
  19. R. A. Brekken, J. P. Overholser, V. A. Stastny, J. Waltenberger, J. D. Minna, and P. E. Thorpe, “Selective inhibition of vascular endothelial growth factor (VEGF) receptor 2 (KDR/Flk-1) activity by a monoclonal anti-VEGF antibody blocks tumor growth in mice,” Cancer Research, vol. 60, no. 18, pp. 5117–5124, 2000. View at Scopus
  20. G. Korpanty, J. G. Carbon, P. A. Grayburn, J. B. Fleming, and R. A. Brekken, “Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature,” Clinical Cancer Research, vol. 13, no. 1, pp. 323–330, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. S. P. Dineen, K. D. Lynn, and K. D. Lynn, “Vascular endothelial growth factor receptor 2 mediates macrophage infiltration into orthotopic pancreatic tumors in mice,” Cancer Research, vol. 68, no. 11, pp. 4340–4346, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. L. Witte, D. J. Hicklin, Z. Zhu, B. Pytowski, H. Kotanides, P. Rockwell, and P. Böhlen, “Monoclonal antibodies targeting the VEGF receptor-2 (Flk1/KDR) as an anti-angiogenic therapeutic strategy,” Cancer and Metastasis Reviews, vol. 17, no. 2, pp. 155–161, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Izumi, E. Di Tomaso, and E. Di Tomaso, “Responses to antiangiogenesis treatment of spontaneous autochthonous tumors and their isografts,” Cancer Research, vol. 63, no. 4, pp. 747–751, 2003. View at Scopus
  24. M. Shibuya, “Vascular endothelial growth factor (VEGF)-receptor2: its biological functions, major signaling pathway, and specific ligand VEGF-E,” Endothelium, vol. 13, no. 2, pp. 63–69, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. K. Holmes, O. L. Roberts, A. M. Thomas, and M. J. Cross, “Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition,” Cellular Signalling, vol. 19, no. 10, pp. 2003–2012, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. N. Ferrara, “Vascular endothelial growth factor: basic science and clinical progress,” Endocrine Reviews, vol. 25, no. 4, pp. 581–611, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. K. Paavonen, P. Puolakkainen, L. Jussila, T. Jahkola, and K. Alitalo, “Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing,” American Journal of Pathology, vol. 156, no. 5, pp. 1499–1504, 2000. View at Scopus
  28. Y. He, I. Rajantie, and I. Rajantie, “Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels,” Cancer Research, vol. 65, no. 11, pp. 4739–4746, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. Y. He, K.-I. Kozaki, T. Karpanen, K. Koshikawa, S. Yla-Herttuala, T. Takahashi, and K. Alitalo, “Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling,” Journal of the National Cancer Institute, vol. 94, no. 11, pp. 819–825, 2002. View at Scopus
  30. G. Neufeld, T. Cohen, N. Shraga, T. Lange, O. Kessler, and Y. Herzog, “The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis,” Trends in Cardiovascular Medicine, vol. 12, no. 1, pp. 13–19, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Soker, H. Fidder, G. Neufeld, and M. Klagsbrun, “Characterization of novel vascular endothelial growth factor (VEGF) receptors on tumor cells that bind VEGF165 via its exon 7-encoded domain,” Journal of Biological Chemistry, vol. 271, no. 10, pp. 5761–5767, 1996. View at Scopus
  32. S. Soker, S. Takashima, H. Q. Miao, G. Neufeld, and M. Klagsbrun, “Neuropilin-1 is expressed by endothelial and tumor cells as an isoform- specific receptor for vascular endothelial growth factor,” Cell, vol. 92, no. 6, pp. 735–745, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Safran and W. G. Kaelin Jr., “HIF hydroxylation and the mammalian oxygen-sensing pathway,” Journal of Clinical Investigation, vol. 111, no. 6, pp. 779–783, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. G. L. Wang and G. L. Semenza, “Purification and characterization of hypoxia-inducible factor 1,” Journal of Biological Chemistry, vol. 270, no. 3, pp. 1230–1237, 1995. View at Publisher · View at Google Scholar · View at Scopus
  35. G. L. Wang, B.-H. Jiang, E. A. Rue, and G. L. Semenza, “Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 12, pp. 5510–5514, 1995. View at Publisher · View at Google Scholar · View at Scopus
  36. G. L. Semenza, “HIF-1, O2, and the 3 PHDs: how animal cells signal hypoxia to the nucleus,” Cell, vol. 107, no. 1, pp. 1–3, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. A. P. Levy, N. S. Levy, S. Wegner, and M. A. Goldberg, “Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia,” Journal of Biological Chemistry, vol. 270, no. 22, pp. 13333–13340, 1995. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Cohen, D. Nahari, L. W. Cerem, G. Neufeld, and B.-Z. Levin, “Interleukin 6 induces the expression of vascular endothelial growth factor,” Journal of Biological Chemistry, vol. 271, no. 2, pp. 736–741, 1996. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Frank, G. Hubner, G. Breier, M. T. Longaker, D. G. Greenhalgh, and S. Werner, “Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing,” Journal of Biological Chemistry, vol. 270, no. 21, pp. 12607–12613, 1995. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Pertovaara, A. Kaipainen, T. Mustonen, A. Orpana, N. Ferrara, O. Saksela, and K. Alitalo, “Vascular endothelial growth factor is induced in response to transforming growth factor-β in fibroblastic and epithelial cells,” Journal of Biological Chemistry, vol. 269, no. 9, pp. 6271–6274, 1994. View at Scopus
  41. R. S. Warren, H. Yuan, M. R. Matli, N. Ferrara, and D. B. Donner, “Induction of vascular endothelial growth factor by insulin-like growth factor 1 in colorectal carcinoma,” Journal of Biological Chemistry, vol. 271, no. 46, pp. 29483–29488, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Ben-Av, L. J. Crofford, R. L. Wilder, and T. Hla, “Induction of vascular endothelial growth factor expression in synovial fibroblasts by prostaglandin E and interleukin-1: a potential mechanism for inflammatory angiogenesis,” FEBS Letters, vol. 372, no. 1, pp. 83–87, 1995. View at Publisher · View at Google Scholar · View at Scopus
  43. Y.-Q. Li, K.-S. Tao, N. Ren, and Y.-H. Wang, “Effect of c-fos antisense probe on prostaglandin E2-induced upregulation of vascular endothelial growth factor mRNA in human liver cancer cells,” World Journal of Gastroenterology, vol. 11, no. 28, pp. 4427–4430, 2005. View at Scopus
  44. S. Grugel, G. Finkenzeller, K. Weindel, B. Barleon, and D. Marme, “Both v-Ha-Ras and v-Raf stimulate expression of the vascular endothelial growth factor in NIH 3T3 cells,” Journal of Biological Chemistry, vol. 270, no. 43, pp. 25915–25919, 1995. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Okada, J. W. Rak, and J. W. Rak, “Impact of oncogenes in tumor angiogenesis: mutant K-ras up-regulation of vascular endothelial growth factor/vascular permeability factor is necessary, but not sufficient for tumorigenicity of human colorectal carcinoma cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 7, pp. 3609–3614, 1998. View at Scopus
  46. J. S. Wey, O. Stoeltzing, and L. M. Ellis, “Vascular endothelial growth factor receptors: expression and function in solid tumors,” Clinical Advances in Hematology & Oncology, vol. 2, no. 1, pp. 37–45, 2004. View at Scopus
  47. M. Decaussin, H. Sartelet, C. Robert, D. Moro, C. Claraz, C. Brambilla, and E. Brambilla, “Expression of vascular endothelial growth factor (VEGF) and its two receptors (VEGF-R1-Flt1 and VEGF-R2-Flk1/KDR) in non-small cell lung carcinomas (NSCLCs): correlation with angiogenesis and survival,” Journal of Pathology, vol. 188, no. 4, pp. 369–377, 1999. View at Scopus
  48. S. Lantuéjoul, B. Constantin, H. Drabkin, C. Brambilla, J. Roche, and E. Brambilla, “Expression of VEGF, semaphorin SEMA3F, and their common receptors neuropilins NP1 and NP2 in preinvasive bronchial lesions, lung tumours, and cell lines,” Journal of Pathology, vol. 200, no. 3, pp. 336–347, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. E. Castro-Rivera, S. Ran, P. Thorpe, and J. D. Minna, “Semaphorin 3B (SEMA3B) induces apoptosis in lung and breast cancer, whereas VEGF165 antagonizes this effect,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 31, pp. 11432–11437, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. P. Nasarre, B. Constantin, and B. Constantin, “Semaphorin SEMA3F and VEGF have opposing effects on cell attachment and spreading,” Neoplasia, vol. 5, no. 1, pp. 83–92, 2003. View at Scopus
  51. F. Bertolini, Y. Shaked, P. Mancuso, and R. S. Kerbel, “The multifaceted circulating endothelial cell in cancer: towards marker and target identification,” Nature Reviews Cancer, vol. 6, no. 11, pp. 835–845, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. T. Okazaki, S. Ebihara, M. Asada, A. Kanda, H. Sasaki, and M. Yamaya, “Granulocyte colony-stimulating factor promotes tumor angiogenesis via increasing circulating endothelial progenitor cells and Gr1+CD11b+ cells in cancer animal models,” International Immunology, vol. 18, no. 1, pp. 1–9, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. M. De Palma, M. A. Venneri, R. Galli, L. S. Sergi, L. S. Politi, M. Sampaolesi, and L. Naldini, “Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors,” Cancer Cell, vol. 8, no. 3, pp. 211–226, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. M. A. Venneri, M. De Palma, and M. De Palma, “Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer,” Blood, vol. 109, no. 12, pp. 5276–5285, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. J. R. Conejo-Garcia, R. J. Buckanovich, F. Benencia, M. C. Courreges, S. C. Rubin, R. G. Carroll, and G. Coukos, “Vascular leukocytes contribute to tumor vascularization,” Blood, vol. 105, no. 2, pp. 679–681, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. M. Grunewald, I. Avraham, and I. Avraham, “VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells,” Cell, vol. 124, no. 1, pp. 175–189, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. B. A. Peters, L. A. Diaz Jr., and L. A. Diaz, “Contribution of bone marrow-derived endothelial cells to human tumor vasculature,” Nature Medicine, vol. 11, no. 3, pp. 261–262, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. M. Garcia-Barros, F. Paris, and F. Paris, “Tumor response to radiotherapy regulated by endothelial cell apoptosis,” Science, vol. 300, no. 5622, pp. 1155–1159, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. H. Spring, T. Schüler, B. Arnold, G. J. Hämmerling, and R. Ganss, “Chemokines direct endothelial progenitors into tumor neovessels,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 50, pp. 18111–18116, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. Y. Shaked, A. Ciarrocchi, and A. Ciarrocchi, “Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors,” Science, vol. 313, no. 5794, pp. 1785–1787, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. D. W. Siemann, D. J. Chaplin, and M. R. Horsman, “Vascular-targeting therapies for treatment of malignant disease,” Cancer, vol. 100, no. 12, pp. 2491–2499, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. N. Ferrara and R. S. Kerbel, “Angiogenesis as a therapeutic target,” Nature, vol. 438, no. 7070, pp. 967–974, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. R. K. Jain, D. G. Duda, J. W. Clark, and J. S. Loeffler, “Lessons from phase III clinical trials on anti-VEGF therapy for cancer,” Nature Clinical Practice Oncology, vol. 3, no. 1, pp. 24–40, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. M. A. Medina, R. Munoz-Chapuli, and A. R. Quesada, “Challenges of antiangiogenic cancer therapy: trials and errors, and renewed hope,” Journal of Cellular and Molecular Medicine, vol. 11, no. 3, pp. 374–382, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. “Aflibercept: AVE 0005, AVE 005, AVE0005, VEGF Trap—regeneron, VEGF Trap (R1R2), VEGF Trap-eye,” Drugs in R and D, vol. 9, no. 4, pp. 261–269, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. D. S. Krause and R. A. Van Etten, “Tyrosine kinases as targets for cancer therapy,” The New England Journal of Medicine, vol. 353, no. 2, pp. 172–187, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. R. J. Motzer, T. E. Hutson, and T. E. Hutson, “Sunitinib versus interferon alfa in metastatic renal-cell carcinoma,” The New England Journal of Medicine, vol. 356, no. 2, pp. 115–124, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. J. M. Llovet, S. Ricci, and S. Ricci, “Sorafenib in advanced hepatocellular carcinoma,” The New England Journal of Medicine, vol. 359, no. 4, pp. 378–390, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. A. M. Jubb, A. J. Oates, S. Holden, and H. Koeppen, “Predicting benefit from anti-angiogenic agents in malignancy,” Nature Reviews Cancer, vol. 6, no. 8, pp. 626–635, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. C. C. Jaffe, “Measures of response: RECIST, WHO, and new alternatives,” Journal of Clinical Oncology, vol. 24, no. 20, pp. 3245–3251, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. D. G. Duda, R. K. Jain, and C. G. Willett, “Antiangiogenics: the potential role of integrating this novel treatment modality with chemoradiation for solid cancers,” Journal of Clinical Oncology, vol. 25, no. 26, pp. 4033–4042, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. L. A. Akslen and G. N. Naumov, “Tumor dormancy—from basic mechanisms to clinical practice,” APMIS, vol. 116, no. 7-8, pp. 545–547, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. G. N. Naumov, J. Folkman, O. Straume, and L. A. Akslen, “Tumor-vascular interactions and tumor dormancy,” APMIS, vol. 116, no. 7-8, pp. 569–585, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. P. Carmeliet, “Angiogenesis in life, disease and medicine,” Nature, vol. 438, no. 7070, pp. 932–936, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. J. I. Greenberg, D. J. Shields, and D. J. Shields, “A role for VEGF as a negative regulator of pericyte function and vessel maturation,” Nature, vol. 456, no. 7223, pp. 809–814, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. R. K. Jain, “Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy,” Nature Medicine, vol. 7, no. 9, pp. 987–989, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. R. K. Jain, “Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy,” Science, vol. 307, no. 5706, pp. 58–62, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. R. P. M. Dings, M. Loren, H. Heun, E. McNiel, A. W. Griffioen, K. H. Mayo, and R. J. Griffin, “Scheduling of radiation with angiogenesis inhibitors anginex and avastin improves therapeutic outcome via vessel normalization,” Clinical Cancer Research, vol. 13, no. 11, pp. 3395–3402, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nature Medicine, vol. 9, no. 6, pp. 713–725, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. J. M. Provenzale, “Imaging of angiogenesis: clinical techniques and novel imaging methods,” American Journal of Roentgenology, vol. 188, no. 1, pp. 11–23, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. Y. Shaked, F. Bertolini, and F. Bertolini, “Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis: implications for cellular surrogate marker analysis of antiangiogenesis,” Cancer Cell, vol. 7, no. 1, pp. 101–111, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. A. R. Padhani and M. O. Leach, “Antivascular cancer treatments: functional assessments by dynamic contrast-enhanced magnetic resonance imaging,” Abdominal Imaging, vol. 30, no. 3, pp. 324–341, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. T. Barrett, M. Brechbiel, M. Bernardo, and P. L. Choyke, “MRI of tumor angiogenesis,” Journal of Magnetic Resonance Imaging, vol. 26, no. 2, pp. 235–249, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. P. S. Tofts, G. Brix, and G. Brix, “Estimating kinetic parameters from dynamic contrast-enhanced T1- weighted MRI of a diffusable tracer: standardized quantities and symbols,” Journal of Magnetic Resonance Imaging, vol. 10, no. 3, pp. 223–232, 1999. View at Publisher · View at Google Scholar · View at Scopus
  85. B. Morgan, A. L. Thomas, and A. L. Thomas, “Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies,” Journal of Clinical Oncology, vol. 21, no. 21, pp. 3955–3964, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. A. Gossmann, T. H. Helbich, and T. H. Helbich, “Dynamic contrast-enhanced magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in a xenograft model of glioblastoma multiforme,” Journal of Magnetic Resonance Imaging, vol. 15, no. 3, pp. 233–240, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. M. O. Leach, K. M. Brindle, and K. M. Brindle, “Assessment of antiangiogenic and antivascular therapeutics using MRI: recommendations for appropriate methodology for clinical trials,” British Journal of Radiology, vol. 76, no. 1, pp. S87–S91, 2003. View at Publisher · View at Google Scholar · View at Scopus
  88. J. C. Miller, H. H. Pien, D. Sahani, A. G. Sorensen, and J. H. Thrall, “Imaging angiogenesis: application and potential for drug development,” Journal of the National Cancer Institute, vol. 97, no. 3, pp. 172–187, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. M. A. Rosen and M. D. Schnall, “Dynamic contrast-enhanced magnetic resonance imaging for assessing tumor vascularity and vascular effects of targeted therapies in renal cell carcinoma,” Clinical Cancer Research, vol. 13, no. 2, part 2, pp. 770s–776s, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. C. G. Willett, Y. Boucher, and Y. Boucher, “Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer,” Nature Medicine, vol. 10, no. 2, pp. 145–147, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. O. M. Hahn, C. Yang, and C. Yang, “Dynamic contrast-enhanced magnetic resonance imaging pharmacodynamic biomarker study of sorafenib in metastatic renal carcinoma,” Journal of Clinical Oncology, vol. 26, no. 28, pp. 4572–4578, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. A. X. Zhu, N. S. Holalkere, A. Muzikansky, K. Horgan, and D. V. Sahani, “Early antiangiogenic activity of bevacizumab evaluated by computed tomography perfusion scan in patients with advanced hepatocellular carcinoma,” Oncologist, vol. 13, no. 2, pp. 120–125, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. A. R. Broumas, R. E. Pollard, S. H. Bloch, E. R. Wisner, S. Griffey, and K. W. Ferrara, “Contrast-enhanced computed tomography and ultrasound for the evaluation of tumor blood flow,” Investigative Radiology, vol. 40, no. 3, pp. 134–147, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. P. E. Dugdale, K. A. Miles, I. Bunce, B. B. Kelley, and D. A. C. Leggett, “CT measurement of perfusion and permeability within lymphoma masses and its ability to assess grade, activity, and chemotherapeutic response,” Journal of Computer Assisted Tomography, vol. 23, no. 4, pp. 540–547, 1999. View at Publisher · View at Google Scholar · View at Scopus
  95. R. E. Pollard, T. C. Garcia, S. M. Stieger, K. W. Ferrara, A. R. Sadlowski, and E. R. Wisner, “Quantitative evaluation of perfusion and permeability of peripheral tumors using contrast-enhanced computed tomography,” Investigative Radiology, vol. 39, no. 6, pp. 340–349, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. Y. Tsushima, S. Funabasama, J. Aoki, S. Sanada, and K. Endo, “Quantitative perfusion map of malignant liver tumors, created from dynamic computed tomography data,” Academic Radiology, vol. 11, no. 2, pp. 215–223, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. F. Castell and G. J. R. Cook, “Quantitative techniques in 18FDG PET scanning in oncology,” British Journal of Cancer, vol. 98, no. 10, pp. 1597–1601, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  98. M. A. Lodge, R. E. Carson, J. A. Carrasquillo, M. Whatley, S. K. Libutti, and S. L. Bacharach, “Parametric images of blood flow in oncology PET studies using [15O]water,” Journal of Nuclear Medicine, vol. 41, no. 11, pp. 1784–1792, 2000. View at Scopus
  99. A. J. De Langen, V. E. M. Van Den Boogaart, J. T. Marcus, and M. Lubberink, “Use of H215O-PET and DCE-MRI to measure tumor blood flow,” Oncologist, vol. 13, no. 6, pp. 631–644, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. D. L. Franklin, W. Schlegel, and R. F. Rushmer, “Blood flow measured by Doppler frequency shift of back-scattered ultrasound,” Science, vol. 134, no. 3478, pp. 564–565, 1961. View at Scopus
  101. W. J. Fry, et al., “Production of focal destructive lesions in the central nervous system with ultrasound,” Journal of Neurosurgery, vol. 11, no. 5, pp. 417–418, 1954.
  102. J.-M. Correas, L. Bridal, A. Lesavre, A. Méjean, M. Claudon, and O. Hélénon, “Ultrasound contrast agents: properties, principles of action, tolerance, and artifacts,” European Radiology, vol. 11, no. 8, pp. 1316–1328, 2001. View at Publisher · View at Google Scholar · View at Scopus
  103. K. E. Morgan, “Experimental and theoretical evaluation of microbubble behavior: effect of transmitted phase and bubble size,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 47, no. 6, pp. 1494–1509, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. J. Cwajg, et al., “Detection of angiographically significant coronary artery disease with accelerated intermittent imaging after intravenous administration of ultrasound contrast material,” American Heart Journal, vol. 139, no. 4, pp. 675–683, 2000.
  105. S.-C. Cheng, T. C. Dy, and S. B. Feinstein, “Contrast echocardiography: review and future directions,” American Journal of Cardiology, vol. 81, no. 12 A, pp. 41G–48G, 1998. View at Scopus
  106. J. L. Cohen, J. Cheirif, D. S. Segar, L. D. Gillam, J. S. Gottdiener, E. Hausnerova, and D. E. Bruns, “Improved left ventricular endocardial border delineation and opacification with OPTISON (FS069), a new echocardiographic contrast agent: results of a phase III multicenter trial,” Journal of the American College of Cardiology, vol. 32, no. 3, pp. 746–752, 1998. View at Publisher · View at Google Scholar · View at Scopus
  107. M. Krix, “Quantification of enhancement in contrast ultrasound: a tool for monitoring of therapies in liver metastases,” European Radiology, Supplement, vol. 15, no. 5, pp. E104–E108, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Krix, et al., “Monitoring of liver metastases after stereotactic radiotherapy using low-MI contrast-enhanced ultrasound–initial results,” European Radiology, vol. 15, no. 4, pp. 677–684, 2005.
  109. T. K. Kim, B. I. Choi, J. K. Han, H.-S. Hong, S. H. Park, and S. G. Moon, “Hepatic tumors: contrast agent-enhancement patterns with pulse-inversion harmonic US,” Radiology, vol. 216, no. 2, pp. 411–417, 2000. View at Scopus
  110. F. Forsberg, B. B. Goldberg, J.-B. Liu, D. A. Merton, N. M. Rawool, and W. T. Shi, “Tissue-specific US contrast agent for evaluation of hepatic and splenic parenchyma,” Radiology, vol. 210, no. 1, pp. 125–132, 1999. View at Scopus
  111. C. J. Harvey, M. J. K. Blomley, R. J. Eckersley, R. A. Heckemann, J. Butler-Barnes, and D. O. Cosgrove, “Pulse-inversion mode imaging of liver specific microbubbles: improved detection of subcentimetre metastases,” Lancet, vol. 355, no. 9206, pp. 807–808, 2000. View at Scopus
  112. K. J. Niermann, A. C. Fleischer, J. Huamani, T. E. Yankeelov, D. W. Kim, W. D. Wilson, and D. E. Hallahan, “Measuring tumor perfusion in control and treated murine tumors: correlation of microbubble contrast-enhanced sonography to dynamic contrast-enhanced magnetic resonance imaging and fluorodeoxyglucose positron emission tomography,” Journal of Ultrasound in Medicine, vol. 26, no. 6, pp. 749–756, 2007. View at Scopus
  113. T. E. Yankeelov, et al., “Correlation between estimates of tumor perfusion from microbubble contrast-enhanced sonography and dynamic contrast-enhanced magnetic resonance imaging,” Journal of Ultrasound in Medicine, vol. 25, no. 4, pp. 487–497, 2006.
  114. S. Ismail, et al., “Relation between air-filled albumin microbubble and red blood cell rheology in the human myocardium. Influence of echocardiographic systems and chest wall attenuation,” Circulation, vol. 94, no. 3, pp. 445–451, 1996.
  115. F. S. Villanueva, R. J. Jankowski, C. Manaugh, and W. R. Wagner, “Albumin microbubble adherence to human coronary endotheliumml: implications for assessment of endothelial function using myocardial contrast echocardiography,” Journal of the American College of Cardiology, vol. 30, no. 3, pp. 689–693, 1997. View at Publisher · View at Google Scholar · View at Scopus
  116. J. R. Lindner, M. P. Coggins, S. Kaul, A. L. Klibanov, G. H. Brandenburger, and K. Ley, “Microbubble persistence in the microcirculation during ischemia/reperfusion and inflammation is caused by integrin- and complement- mediated adherence to activated leukocytes,” Circulation, vol. 101, no. 6, pp. 668–675, 2000. View at Scopus
  117. J. R. Lindner, P. A. Dayton, M. P. Coggins, K. Ley, J. Song, K. Ferrara, and S. Kaul, “Noninvasive imaging of inflammation by ultrasound detection of Phagocytosed microbubbles,” Circulation, vol. 102, no. 5, pp. 531–538, 2000. View at Scopus
  118. P. A. Dayton and K. W. Ferrara, “Targeted imaging using ultrasound,” Journal of Magnetic Resonance Imaging, vol. 16, no. 4, pp. 362–377, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  119. G. Korpanty, P. A. Grayburn, R. V. Shohet, and R. A. Brekken, “Targeting vascular endothelium with avidin microbubbles,” Ultrasound in Medicine and Biology, vol. 31, no. 9, pp. 1279–1283, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  120. G. M. Lanza and S. A. Wickline, “Targeted ultrasonic contrast agents for molecular imaging and therapy,” Progress in Cardiovascular Diseases, vol. 44, no. 1, pp. 13–31, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  121. J. R. Lindner, J. Song, J. Christiansen, A. L. Klibanov, F. Xu, and K. Ley, “Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin,” Circulation, vol. 104, no. 17, pp. 2107–2112, 2001. View at Scopus
  122. F. S. Villanueva, R. J. Jankowski, and R. J. Jankowski, “Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells,” Circulation, vol. 98, no. 1, pp. 1–5, 1998. View at Scopus
  123. F. S. Villanueva and W. R. Wagner, “Ultrasound molecular imaging of cardiovascular disease,” Nature Clinical Practice Cardiovascular Medicine, vol. 5, no. 2, pp. S26–S32, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  124. K. Hida, Y. Hida, D. N. Amin, A. F. Flint, D. Panigrahy, C. C. Morton, and M. Klagsbrun, “Tumor-associated endothelial cells with cytogenetic abnormalities,” Cancer Research, vol. 64, no. 22, pp. 8249–8255, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  125. B. St. Croix, C. Rago, and C. Rago, “Genes expressed in human tumor endothelium,” Science, vol. 289, no. 5482, pp. 1197–1202, 2000. View at Publisher · View at Google Scholar · View at Scopus
  126. A. Eberhard, S. Kahlert, V. Goede, B. Hemmerlein, K. H. Plate, and H. G. Augustin, “Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies,” Cancer Research, vol. 60, no. 5, pp. 1388–1393, 2000. View at Scopus
  127. D. J. Lee, et al., “Relationship between retention of a vascular endothelial growth factor receptor 2 (VEGFR2)-targeted ultrasonographic contrast agent and the level of VEGFR2 expression in an in vivo breast cancer model,” Journal of Ultrasound in Medicine, vol. 27, no. 6, pp. 855–866, 2008.
  128. A. Lyshchik, A. C. Fleischer, J. Huamani, D. E. Hallahan, M. Brissova, and J. C. Gore, “Molecular imaging of vascular endothelial growth factor receptor 2 expression using targeted contrast-enhanced high-frequency ultrasonography,” Journal of Ultrasound in Medicine, vol. 26, no. 11, pp. 1575–1586, 2007. View at Scopus
  129. M. Palmowski, J. Huppert, and J. Huppert, “Molecular profiling of angiogenesis with targeted ultrasound imaging: early assessment of antiangiogenic therapy effects,” Molecular Cancer Therapeutics, vol. 7, no. 1, pp. 101–109, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  130. H. Leong-Poi, “Molecular imaging using contrast-enhanced ultrasound: evaluation of angiogenesis and cell therapy,” Cardiovascular Research, vol. 84, no. 2, pp. 190–200, 2009.
  131. M. A. Kuliszewski, H. Fuj II, C. Liao, A. H. Smith, A. Xie, J. R. Lindner, and H. Leong-Poi, “Molecular imaging of endothelial progenitor cell engraftment using contrast-enhanced ultrasound and targeted microbubbles,” Cardiovascular Research, vol. 83, no. 4, pp. 653–662, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  132. J. K. Willmann, Z. Cheng, C. Davis, A. M. Lutz, M. L. Schipper, C. H. Nielsen, and S. S. Gambhir, “Targeted microbubbles for imaging tumor angiogenesis: assessment of whole-body biodistribution with dynamic micro-pet in Mice,” Radiology, vol. 249, no. 1, pp. 212–219, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  133. J. K. Willmann, A. M. Lutz, R. Paulmurugan, M. R. Patel, P. Chu, J. Rosenberg, and S. S. Gambhir, “Dual-targeted contrast agent for US assessment of tumor angiogenesis in vivo,” Radiology, vol. 248, no. 3, pp. 936–944, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  134. H. M. W. Verheul and H. M. Pinedo, “Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition,” Nature Reviews Cancer, vol. 7, no. 6, pp. 475–485, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  135. X. Zhu, S. Wu, W. L. Dahut, and C. R. Parikh, “Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis,” American Journal of Kidney Diseases, vol. 49, no. 2, pp. 186–193, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  136. V. Eremina, J. A. Jefferson, and J. A. Jefferson, “VEGF inhibition and renal thrombotic microangiopathy,” The New England Journal of Medicine, vol. 358, no. 11, pp. 1129–1136, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  137. J. S. Rudge, et al., “Inaugural article: VEGF Trap complex formation measures production rates of VEGF, providing a biomarker for predicting efficacious angiogenic blockade,” Proceedings of the National Academy of Sciences of USA, vol. 104, no. 47, pp. 18363–18370, 2007.
  138. R. S. Herbst and A. B. Sandler, “Non-small cell lung cancer and antiangiogenic therapy: what can be expected of bevacizumab?” Oncologist, vol. 9, no. 1, pp. 19–26, 2004. View at Publisher · View at Google Scholar · View at Scopus
  139. A. Sandler, R. Gray, and R. Gray, “Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer,” The New England Journal of Medicine, vol. 355, no. 24, pp. 2542–2550, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  140. T. A. Traina, L. Norton, K. Drucker, and B. Singh, “Nasal septum perforation in a bevacizumab-treated patient with metastatic breast cancer,” Oncologist, vol. 11, no. 10, pp. 1070–1071, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  141. C. Ozcan, S. J. Wong, and P. Hari, “Reversible posterior leukoencephalopathy syndrome and bevacizumab,” The New England Journal of Medicine, vol. 354, no. 9, pp. 981–982, 2006. View at Scopus
  142. C. L. Estilo, M. Fornier, A. Farooki, D. Carlson, G. Bohle I II, and J. M. Huryn, “Osteonecrosis of the jaw related to bevacizumab,” Journal of Clinical Oncology, vol. 26, no. 24, pp. 4037–4038, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  143. J. M. Roodhart, M. H. Langenberg, E. Witteveen, and E. E. Voest, “The molecular basis of class side effects due to treatment with inhibitors of the VEGF/VEGFR pathway,” Current Clinical Pharmacology, vol. 3, no. 2, pp. 132–143, 2008. View at Publisher · View at Google Scholar · View at Scopus
  144. Y. Je, F. A. Schutz, and T. K. Choueiri, “Risk of bleeding with vascular endothelial growth factor receptor tyrosine-kinase inhibitors sunitinib and sorafenib: a systematic review and meta-analysis of clinical trials,” The Lancet Oncology, vol. 10, no. 10, pp. 967–974, 2009. View at Publisher · View at Google Scholar · View at Scopus
  145. V. Brower, “Antiangiogenesis research is booming, as questions and studies proliferate,” Journal of the National Cancer Institute, vol. 101, no. 11, pp. 780–781, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  146. G. Bergers and D. Hanahan, “Modes of resistance to anti-angiogenic therapy,” Nature Reviews Cancer, vol. 8, no. 8, pp. 592–603, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  147. T. T. Batchelor, A. G. Sorensen, and A. G. Sorensen, “AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients,” Cancer Cell, vol. 11, no. 1, pp. 83–95, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  148. O. Casanovas, D. J. Hicklin, G. Bergers, and D. Hanahan, “Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors,” Cancer Cell, vol. 8, no. 4, pp. 299–309, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  149. Y. Mizukami, W.-S. Jo, and W.-S. Jo, “Induction of interleukin-8 preserves the angiogenic response in HIF-1α-deficient colon cancer cells,” Nature Medicine, vol. 11, no. 9, pp. 992–997, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  150. M. R. Mancuso, R. Davis, and R. Davis, “Rapid vascular regrowth in tumors after reversal of VEGF inhibition,” Journal of Clinical Investigation, vol. 116, no. 10, pp. 2610–2621, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  151. S. Song, A. J. Ewald, W. Stallcup, Z. Werb, and G. Bergers, “PDGFRβ+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival,” Nature Cell Biology, vol. 7, no. 9, pp. 870–879, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  152. J. L. Yu, J. W. Rak, P. Carmeliet, A. Nagy, R. S. Kerbel, and B. L. Coomber, “Heterogeneous vascular dependence of tumor cell populations,” American Journal of Pathology, vol. 158, no. 4, pp. 1325–1334, 2001. View at Scopus
  153. R. S. Bhatt, P. Seth, and V. P. Sukhatme, “Biomarkers for monitoring antiangiogenic therapy,” Clinical Cancer Research, vol. 13, no. 2, part 2, pp. 777s–780s, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus