About this Journal Submit a Manuscript Table of Contents
Journal of Oncology
Volume 2012 (2012), Article ID 358472, 9 pages
http://dx.doi.org/10.1155/2012/358472
Review Article

Angiogenesis in Head and Neck Cancer: A Review of the Literature

Division of Medical Oncology, A.O. San Paolo Via di Rudinì 8, 20122 Milan, Italy

Received 1 July 2011; Accepted 10 September 2011

Academic Editor: Arkadiusz Dudek

Copyright © 2012 Codecà Carla et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Davies and H. G. Welch, “Epidemiology of head and neck cancer in the United States,” Otolaryngology-Head & Neck Surgery, vol. 135, no. 3, pp. 451–457, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. A. A. Forastiere, A. Trotti, D. G. Pfister, and J. R. Grandis, “Head and neck cancer: recent advances and new standards of care,” Journal of Clinical Oncology, vol. 10, no. 17, pp. 2603–2605, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. J. Vermorken, R. Mesia, F. Rivera et al., “Platinum-based chemotherapy plus cetuximab in head and neck cancer,” New England Journal of Medicine, vol. 359, no. 11, pp. 1116–1127, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. A. Christopoulos, S. M. Ahn, and J. D. Klein, “Seungwon Kim. Biology of vascular endothelial growth factor and its receptors in head and neck cancer: beyond angiogenesis,” Head and Neck, vol. 33, no. 8, pp. 1220–1229, 2011.
  5. P. H. Maxwell, M. S. Wlesener, G. W. Chang et al., “The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis,” Nature, vol. 399, no. 6733, pp. 271–275, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. D. J. Hicklin and L. M. Ellis, “Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis,” Journal of Clinical Oncology, vol. 23, no. 5, pp. 1011–1027, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. N. Ferrara, H. P. Gerber, and J. LeCouter, “The biology of VEGF and its receptors,” Nature Medicine, vol. 9, no. 6, pp. 669–676, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. K. Holmes, O. L. Roberts, A. M. Thomas, and M. J. Cross, “Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition,” Cellular Signalling, vol. 19, no. 10, pp. 2003–2012, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. L. M. Ellis, “The role of neuropilins in cancer,” Molecular Cancer Therapeutics, vol. 5, no. 5, pp. 1099–1107, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. F. Riedel, K. Götte, J. Schwalb, H. Wirtz, W. Bergler, and K. Hörmann, “Serum levels of vascular endothelial growth factor in patients with head and neck cancer,” European Archives of Oto-Rhino-Laryngology, vol. 257, no. 6, pp. 332–336, 2000.
  11. B. Shemirani and D. L. Crowe, “Head and neck squamous cell carcinoma lines produce biologically active angiogenic factors,” Oral Oncology, vol. 36, no. 1, pp. 61–66, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. B. D. Smith, G. L. Smith, D. Carter, C. T. Sasaki, and B. G. Haffty, “Prognostic significance of Vascular Endothelial Growth Factor protein levels in oral and oropharyngeal squamous cell carcinoma,” Journal of Clinical Oncology, vol. 18, no. 10, pp. 2046–2052, 2000. View at Scopus
  13. E. J. Lentsch, S. Goudy, J. Sosnowski, S. Major, and J. M. Bumpous, “Microvessel density in head and neck squamous cell carcinoma primary tumors and its correlation with clinical staging parameters,” Laryngoscope, vol. 116, no. 3, pp. 397–400, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. M. Moriyama, S. Kumagai, S. Kawashiri, K. Kojima, K. Kakihara, and E. Yamamoto, “Immunohistochemical study of tumour angiogenesis in oral squamous cell carcinoma,” Oral Oncology, vol. 33, no. 5, pp. 369–374, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Boonkitticharoen, B. Kulapaditharom, J. Leopairut et al., “Vascular endothelial growth factor a and proliferation marker in prediction of lymph node metastasis in oral and pharyngeal squamous cell carcinoma,” Archives of Otolaryngology: Head and Neck Surgery, vol. 134, no. 12, pp. 1305–1311, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. G. Tse, A. Chan, K. Yu et al., “Strong immunohistochemical expression of vascular endothelial growth factor predicts overall survival in head and neck squamous cell carcinoma,” Annals of Surgical Oncology, vol. 14, no. 12, pp. 3558–3565, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. P. A. Kyzas, I. W. Cunha, and J. P. Ioannidis, “Prognostic significance of vascular endothelial growth factor immunohistochemical expression in head and neck squamous cell carcinoma: a meta-analysis,” Clinical Cancer Research, vol. 11, no. 4, pp. 1434–1440, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. R. Hasina, M. Whipple, L. Martin, W. P. Kuo, L. Ohno-Machado, and M. W. Lingen, “Angiogenic heterogeneity in head and neck squamous cell carcinoma: biological and therapeutic implications,” Laboratory Investigation, vol. 88, no. 4, pp. 342–353, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. M. Miyazawa, Z. Dong, Z. Zhang et al., “Effect of PTK/ZK on the angiogenic switch in head and neck tumors,” Journal of Dental Research, vol. 87, no. 12, pp. 1166–1171, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Hess-Stunnpp, M. Haberey, and K. H. Thierauch, “PTK 787/ZK 222584, a tyrosine kinase inhibitor of all known VEGF receptors, represses tumor growth with high efficacy,” ChemBioChem, vol. 6, no. 3, pp. 550–557, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. J. Drevs, I. Hofmann, H. Hugenschmidt et al., “Effects of PTK787/ZK 222584, a specific inhibitor of vascular endothelial growth factor receptor tyrosine kinases, on primary tumor, metastasis, vessel density, and blood flow in a murine renal cell carcinoma model,” Cancer Research, vol. 60, no. 17, pp. 4819–4824, 2000. View at Scopus
  22. S. Kim, Y. D. Yazici, S. E. Barber et al., “Growth inhibition of orthotopic anaplastic thyroid carcinoma xenografts in nude mice by PTK787/ZK222584 and CPT-11,” Head and Neck, vol. 28, no. 5, pp. 389–399, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. F. Ciardiello, R. Caputo, R. Bianco et al., “Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor,” Clinical Cancer Research, vol. 7, no. 5, pp. 1459–1465, 2001. View at Scopus
  24. Y. D. Jung, P. F. Mansfield, M. Akagi et al., “Effects of combination anti-vascular endothelial growth factor receptor and anti-epidermal growth factor receptor therapies on the growth of gastric cancer in a nude mouse model,” European Journal of Cancer, vol. 38, no. 8, pp. 1133–1140, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. R. S. Herbst, E. Mininberg, T. Henderson, et al., “Phase I/II trial evaluating blockade of tumour blood supply and tumour cell proliferation with combined bevacizumab and erlotinib HCI as targeted cancer therapy in patients with recurrent non-small cell lung cancer,” European Journal of Cancer, vol. 1, p. S293, 2003.
  26. P. R. Wachsberger, R. Burd, N. Marero et al., “Effect of the tumor vascular-damaging agent, ZD6126, on the radioresponse of U87 glioblastoma,” Clinical Cancer Research, vol. 11, no. 2 I, pp. 835–842, 2005. View at Scopus
  27. C. Nieder, N. Wiedenmann, N. Andratschke, and M. Molls, “Current status of angiogenesis inhibitors combined with radiation therapy,” Cancer Treatment Reviews, vol. 32, no. 5, pp. 348–364, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. J. A. Bonner, P. M. Harari, J. Giralt et al., “Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck,” New England Journal of Medicine, vol. 354, no. 6, pp. 567–578, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. A. Bozec, P. Formento, S. Lassalle, C. Lippens, P. Hofman, and G. Milano, “Dual inhibition of EGFR and VEGFR pathways in combination with irradiation: antitumour supra-additive effects on human head and neck cancer xenografts,” British Journal of Cancer, vol. 97, no. 1, pp. 65–72, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. S. R. Wedge, J. Kendrew, L. F. Hennequin et al., “AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer,” Cancer Research, vol. 65, no. 10, pp. 4389–4400, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. A. Bozec, A. Sudaka, J. L. Fischel, M. C. Brunstein, M. C. Etienne-Grimaldi, and G. Milano, “Combined effects of bevacizumab with erlotinib and irradiation: a preclinical study on a head and neck cancer orthotopic model,” British Journal of Cancer, vol. 99, no. 1, pp. 93–99, 2008. View at Publisher · View at Google Scholar · View at PubMed
  32. A. Bozec, A. Sudaka, N. Toussan, J. L. Fischel, M. C. Etienne-Grimaldi, and G. Milano, “Combination of sunitinib, cetuximab and irradiation in an orthotopic head and neck cancer model,” Annals of Oncology, vol. 20, no. 10, pp. 1703–1707, 2009. View at Publisher · View at Google Scholar · View at PubMed
  33. H. Myoung, S. D. Hong, Y. Y. Kim, S. P. Hong, and M. J. Kim, “Evaluation of the anti-tumor and anti-angiogenic effect of paclitaxel and thalidomide on the xenotransplanted oral squamous cell carcinoma,” Cancer Letters, vol. 163, no. 2, pp. 191–200, 2001. View at Publisher · View at Google Scholar
  34. R. J. D'Amato, M. J. Loughnan, E. Flynn, and J. Folkman, “Thalidomide is an inhibitor of angiogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 9, pp. 4082–4085, 1994.
  35. B. M. Kenyon, F. Browne, and R. J. D'Amato, “Effects of thalidomide and related metabolites in a mouse corneal model of neovascularization,” Experimental Eye Research, vol. 64, no. 6, pp. 971–978, 1997. View at Publisher · View at Google Scholar · View at PubMed
  36. F. E. Kruse, A. M. Joussen, K. Rohrschneider, M. D. Becker, and E. Völcker, “Thalidomide inhibits corneal angiogenesis induced by vascular endothelial growth factor,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 236, no. 6, pp. 461–466, 1998. View at Publisher · View at Google Scholar
  37. H. M. Verheul, D. Panigrahy, J. Yuan, and R. J. D'Amato, “Combination oral antiangiogenic therapy with thalidomide and sulindac inhibits tumour growth in rabbits,” British Journal of Cancer, vol. 79, no. 1, pp. 114–118, 1999. View at Publisher · View at Google Scholar · View at PubMed
  38. H. M. Burt, J. K. Jackson, S. K. Bains et al., “Controlled delivery of taxol from microspheres composed of a blend of ethylene-vinyl acetate copolymer and poly (d,l-lactic acid),” Cancer Letters, vol. 88, no. 1, pp. 73–79, 1995. View at Publisher · View at Google Scholar
  39. S. K. Dordunoo, J. K. Jackson, L. A. Arsenault, A. M. Oktaba, W. L. Hunter, and H. M. Burt, “Taxol encapsulation in poly(ε-caprolactone) microspheres,” Cancer Chemotherapy and Pharmacology, vol. 36, no. 4, pp. 279–282, 1995. View at Publisher · View at Google Scholar
  40. D. Belotti, V. Vergani, T. Drudis et al., “The microtubule-affecting drug paclitaxel has antiangiogenic activity,” Clinical Cancer Research, vol. 2, no. 11, pp. 1843–1849, 1996.
  41. N. Klauber, S. Parangi, E. Flynn, E. Hamel, and R. J. D'Amato, “Inhibition of angiogenesis and breast cancer in mice by the microtubule inhibitors 2-methoxyestradiol and taxol,” Cancer Research, vol. 57, no. 1, pp. 81–86, 1997.
  42. N. W. Choong, M. Kozloff, M. Taber et al., “Phase II study of sunitinib malate in head and neck squamous cell carcinoma,” Investigational New Drugs, vol. 28, no. 5, pp. 677–683, 2010. View at Publisher · View at Google Scholar · View at PubMed
  43. G. Fountzilas, A. Fragkoulidi, A. Kalogera-Fountzila et al., “A phase II study of sunitinib in patients with recurrent and/or metastatic non-nasopharyngeal head and neck cancer,” Cancer Chemotherapy and Pharmacology, vol. 65, no. 4, pp. 649–660, 2010. View at Publisher · View at Google Scholar · View at PubMed
  44. J.-P. H. Machiels, S. Henry, S. Zanetta et al., “Phase II study of sunitinib in recurrent or metastatic squamous cell carcinoma of the head and neck: GORTEC 2006-01,” Journal of Clinical Oncology, vol. 28, no. 1, pp. 21–28, 2010. View at Publisher · View at Google Scholar · View at PubMed
  45. C. Elser, L. L. Siu, E. Winquist et al., “Phase II trial of sorafenib in patients with recurrent or metastatic squamous cell carcinoma of the head and neck or nasopharyngeal carcinoma,” Journal of Clinical Oncology, vol. 25, no. 24, pp. 3766–3772, 2007. View at Publisher · View at Google Scholar · View at PubMed
  46. S. K. Williamson, J. Moon, C. H. Huang et al., “Phase II evaluation of sorafenib in advanced and metastatic squamous cell carcinoma of the head and neck: southwest Oncology Group Study S0420,” Journal of Clinical Oncology, vol. 28, no. 20, pp. 3330–3335, 2010. View at Publisher · View at Google Scholar · View at PubMed
  47. E. W. Cohen, D. W. Davis, T. J. Karrison et al., “Erlotinib and bevacizumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck: a phase I/II study,” The Lancet Oncology, vol. 10, no. 3, pp. 247–257, 2009. View at Publisher · View at Google Scholar
  48. F. Ciardiello, R. Bianco, V. Damiano et al., “Antiangiogenic and antitumor activity of anti-epidermal growth factor receptor C225 monoclonal antibody in combination with vascular endothelial growth factor antisense oligonucleotide in human GEO colon cancer cells,” Clinical Cancer Research, vol. 6, no. 9, pp. 3739–3747, 2000.
  49. A. Viloria-Petit, T. Crombet, S. Jothy et al., “Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis,” Cancer Research, vol. 61, no. 13, pp. 5090–5101, 2001.
  50. F. Ciardiello, R. Bianco, R. Caputo et al., “Antitumor activity of ZD6474, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, in human cancer cells with acquired resistance to antiepidermal growth factor receptor therapy,” Clinical Cancer Research, vol. 10, no. 2, pp. 784–793, 2004. View at Publisher · View at Google Scholar
  51. R. S. Herbst, V. J. O'Neill, L. Fehrenbacher et al., “Phase II study of efficacy and safety of bevacizumab in combination with chemotherapy or erlotinib compared with chemotherapy alone for treatment of recurrent or refractory non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 25, no. 30, pp. 4743–4750, 2007. View at Publisher · View at Google Scholar · View at PubMed
  52. L. B. Saltz, H. J. Lenz, H. L. Kindler et al., “Randomized phase II trial of cetuximab, bevacizumab, and irinotecan compared with cetuximab and bevacizumab alone in irinotecan-refractory colorectal cancer: the BOND-2 study,” Journal of Clinical Oncology, vol. 25, no. 29, pp. 4557–4561, 2007. View at Publisher · View at Google Scholar · View at PubMed
  53. C. N. Prichard, S. Kim, Y. D. Yazici et al., “Concurrent cetuximab and bevacizumab therapy in a murine orthotopic model of anaplastic thyroid carcinoma,” Laryngoscope, vol. 117, no. 4, pp. 674–679, 2007. View at Publisher · View at Google Scholar · View at PubMed
  54. T. Y. Seiwert, D. J. Haraf, E. W. Cohen et al., “Phase I study of bevacizumab added to fluorouracil- and hydroxyurea-based concomitant chemoradiotherapy for poor-prognosis head and neck cancer,” Journal of Clinical Oncology, vol. 28, no. 10, pp. 1732–1741, 2008. View at Publisher · View at Google Scholar · View at PubMed
  55. J. K. Salama, E. E. Vokes, S. J. Chmura et al., “Long-term outcome of concurrent chemotherapy and reirradiation for recurrent and second primary head-and-neck squamous cell carcinoma,” International Journal of Radiation Oncology Biology Physics, vol. 64, no. 2, pp. 382–391, 2006. View at Publisher · View at Google Scholar · View at PubMed
  56. S. A. Spencer, J. Harris, R. H. Wheeler et al., “RTOG 96-10: reirradiation with concurrent hydroxyurea and 5-fluorouracil in patients with squamous cell cancer of the head and neck,” International Journal of Radiation Oncology Biology Physics, vol. 51, no. 5, pp. 1299–1304, 2001. View at Publisher · View at Google Scholar
  57. E. E. Vokes, W. R. Panje, R. L. Schilsky et al., “Hydroxyurea, fluorouracil, and concomitant radiotherapy in poor-prognosis head and neck cancer: a phase I-II study,” Journal of Clinical Oncology, vol. 7, no. 6, pp. 761–768, 1989.
  58. D. J. Haraf, R. R. Weichselbaum, and E. E. Yokes, “Re-irradiation with concomitant chemotherapy of unresectable recurrent head and neck cancer: a potentially curable disease,” Annals of Oncology, vol. 7, no. 9, pp. 913–918, 1996.
  59. B. Brockstein, D. J. Haraf, K. Stenson et al., “Phase I study of concomitant chemoradiotherapy with paclitaxel, fluorouracil, and hydroxyurea with granulocyte colony-stimulating factor support for patients with poor-prognosis cancer of the head and neck,” Journal of Clinical Oncology, vol. 16, no. 2, pp. 735–744, 1998.
  60. E. E. Vokes, D. J. Haraf, R. Mick, J. M. McEvilly, and R. R. Weichselbaum, “Intensified concomitant chemoradiotherapy with and without filgrastim for poor-prognosis head and neck cancer,” Journal of Clinical Oncology, vol. 12, no. 11, pp. 2351–2359, 1994.
  61. B. Brockstein, D. J. Haraf, K. Stenson et al., “A phase I-II study of concomitant chemoradiotherapy with paclitaxel (one-hour infusion), 5-fluorouracil and hydroxyurea with granulocyte colony stimulating factor support for patients with poor prognosis head and neck cancer,” Annals of Oncology, vol. 11, no. 6, pp. 721–728, 2000. View at Publisher · View at Google Scholar
  62. J. K. Salama, D. J. Haraf, K. Stenson, M. T. Milano, M. E. Witt, and E. E. Vokes, “Phase I study of concomitant chemoradiotherapy with irinotecan, 5-FU, and hydroxyurea for patients with advanced and/or recurrent head and neck cancer,” Cancer Journal, vol. 11, no. 2, pp. 140–146, 2005.
  63. M. T. Milano, D. J. Haraf, K. M. Stenson et al., “Phase I study of concomitant chemoradiotherapy with paclitaxel, fluorouracil, gemcitabine, and twice-daily radiation in patients with poor-prognosis cancer of the head and neck,” Clinical Cancer Research, vol. 10, no. 15, pp. 4922–4932, 2004. View at Publisher · View at Google Scholar · View at PubMed
  64. R. de Crevoisier, C. Domenge, P. Wibault et al., “Full dose reirradiation combined with chemotherapy after salvage surgery in head and neck carcinoma,” Cancer, vol. 91, no. 11, pp. 2071–2076, 2001. View at Publisher · View at Google Scholar
  65. R. de Crevoisier, J. Bourhis, C. Domenge et al., “Full-dose reirradiation for unresectable head and neck carcinoma: experience at the Gustave-Roussy Institute in a series of 169 patients,” Journal of Clinical Oncology, vol. 16, no. 11, pp. 3556–3562, 1998.
  66. S. A. Spencer, R. H. Wheeler, G. E. Peters et al., “Concomitant chemotherapy and reirradiation as management for recurrent cancer of the head and neck,” American Journal of Clinical Oncology, vol. 22, no. 1, pp. 1–5, 1999. View at Publisher · View at Google Scholar
  67. S. A. Spencer, J. Harris, R. H. Wheeler et al., “Final report of RTOG 9610, a multi-institutional trial of reirradiation and chemotherapy for unresectable recurrent squamous cell carcinoma of the head and neck,” Head and Neck, vol. 30, no. 3, pp. 281–288, 2008. View at Publisher · View at Google Scholar · View at PubMed
  68. A. A. Meluch, D. Spigel, H. A. Burris, et al., “Combined modality therapy with radiation therapy (RT), chemotherapy, bevacizumab, and erlotinib in the treatment of patients (pts) with locally advanced squamous carcinoma of the head and neck,” in Proceedings of the Annual Meeting of the American Society of Clinical Oncology (ASCO '09), vol. 27, no. 15S, p. 6012, May 2009.
  69. D. G. Pfister, N. Y. Lee, E. Sherman, et al., “Phase II study of bevacizumab (B) plus cisplatin (C) plus intensity-modulated radiation therapy (IMRT) for locoregionally advanced head and neck squamous cell cancer (HNSCC): preliminary results,” in Proceedings of the Annual Meeting of the American Society of Clinical Oncology (ASCO '09), vol. 27, no. 15S, p. 6013, May 2009.
  70. J. M. L. Ebos, C. R. Lee, W. Cruz-Munoz, J. A. Bjarnason, J. G. Christensen, and R. S. Kerbel, “Accelerated Metastasis after Short-Term Treatment with a Potent Inhibitor of Tumor Angiogenesis,” Cancer Cell, vol. 15, no. 3, pp. 232–239, 2009. View at Publisher · View at Google Scholar · View at PubMed
  71. M. Pàez-Ribes, E. Allen, J. Hudock et al., “Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis,” Cancer Cell, vol. 15, no. 3, pp. 220–231, 2009. View at Publisher · View at Google Scholar · View at PubMed
  72. M. Johannsen, A. Florcken, A. Bex, et al., “Can tyrosine kinase inhibitors be discontinued in patients with metastatic renal cell carcinoma and a complete response to treatment? A multicentre retrospective analysis,” European Urology, vol. 55, no. 6, pp. 1430–1438, 2009.
  73. M. C. Brahimi-Horn, J. Chiche, and J. Pouysségur, “Hypoxia and cancer,” Journal of Molecular Medicine, vol. 85, no. 12, pp. 1301–1307, 2007. View at Publisher · View at Google Scholar · View at PubMed
  74. J. L. Yu, J. W. Rak, B. L. Coomber, D. J. Hicklin, and R. S. Kerbel, “Effect of p53 status on tumor response to antiangiogenic therapy,” Science, vol. 295, no. 5559, pp. 1526–1528, 2002. View at Publisher · View at Google Scholar · View at PubMed
  75. Y. Shaked, A. Ciarrocchi, M. Franco et al., “Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors,” Science, vol. 313, no. 5794, pp. 1785–1787, 2006. View at Publisher · View at Google Scholar · View at PubMed
  76. J. Condeelis and J. W. Pollard, “Macrophages: obligate partners for tumor cell migration, invasion, and metastasis,” Cell, vol. 124, no. 2, pp. 263–266, 2006. View at Publisher · View at Google Scholar · View at PubMed
  77. H. Nozawa, C. Chiu, and D. Hanahan, “Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 33, pp. 12493–12498, 2006. View at Publisher · View at Google Scholar · View at PubMed
  78. R. S. Kerbel, “Tumor angiogenesis,” New England Journal of Medicine, vol. 358, no. 19, pp. 2039–2049, 2008. View at Publisher · View at Google Scholar · View at PubMed
  79. J. Joyce and J. W. Pollard, “Microenvironmental regulation of metastasis,” Nature Reviews Cancer, vol. 9, no. 4, pp. 239–252, 2009. View at Publisher · View at Google Scholar · View at PubMed
  80. M. de Palma, M. A. Venneri, R. Galli et al., “Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors,” Cancer Cell, vol. 8, no. 3, pp. 211–226, 2005. View at Publisher · View at Google Scholar · View at PubMed
  81. K. Hattori, B. Heissig, Y. Wu et al., “Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone-marrow microenvironment,” Nature Medicine, vol. 8, no. 8, pp. 841–849, 2002. View at Publisher · View at Google Scholar · View at PubMed
  82. R. N. Kaplan, R. D. Riba, S. Zacharoulis et al., “VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche,” Nature, vol. 438, no. 7069, pp. 820–827, 2005. View at Publisher · View at Google Scholar · View at PubMed
  83. M. Grunewald, I. Avraham, Y. Dor et al., “VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells,” Cell, vol. 124, no. 1, pp. 175–189, 2006. View at Publisher · View at Google Scholar · View at PubMed
  84. R. Du, K. V. Lu, C. Petritsch et al., “HIF1α induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion,” Cancer Cell, vol. 13, no. 3, pp. 206–220, 2008. View at Publisher · View at Google Scholar · View at PubMed
  85. F. Shojaei, X. Wu, A. K. Malik et al., “Tumor refractoriness to anti-VEGF treatment is mediated by CD11b +Gr1+ myeloid cells,” Nature Biotechnology, vol. 25, no. 8, pp. 911–920, 2007. View at Publisher · View at Google Scholar · View at PubMed
  86. F. Shojaei, M. Singh, J. D. Thompson, and N. Ferrara, “Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 7, pp. 2640–2645, 2008. View at Publisher · View at Google Scholar · View at PubMed
  87. J. M. Ebos, C. R. Lee, J. G. Christensen, A. J. Mutsaers, and R. S. Kerbel, “Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 43, pp. 17069–17074, 2007. View at Publisher · View at Google Scholar · View at PubMed
  88. G. Bergers and D. Hanahan, “Modes of resistance to anti-angiogenic therapy,” Nature Reviews Cancer, vol. 8, no. 8, pp. 592–603, 2008. View at Publisher · View at Google Scholar · View at PubMed