About this Journal Submit a Manuscript Table of Contents
Journal of Oncology
Volume 2012 (2012), Article ID 621685, 7 pages
http://dx.doi.org/10.1155/2012/621685
Research Article

DNA Damage Response is Prominent in Ovarian High-Grade Serous Carcinomas, Especially Those with Rsf-1 (HBXAP) Overexpression

1Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
2Department of Pathology, Cleveland Clinics, Cleveland, OH 44195, USA

Received 14 May 2011; Revised 29 July 2011; Accepted 11 August 2011

Academic Editor: Kentaro Nakayama

Copyright © 2012 Malti Kshirsagar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. R. Cho and I. M. Shih, “Ovarian cancer,” Annual Review of Pathology, vol. 4, pp. 287–313, 2009. View at Publisher · View at Google Scholar
  2. M. Köbel, S. E. Kalloger, N. Boyd et al., “Ovarian carcinoma subtypes are different diseases: implications for biomarker studies,” PLoS Medicine, vol. 5, no. 12, article e232, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. I. M. Shih and R. J. Kurman, “Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis,” American Journal of Pathology, vol. 164, no. 5, pp. 1511–1518, 2004. View at Scopus
  4. K. Oka, T. Tanaka, T. Enoki et al., “DNA damage signaling is activated during cancer progression in human colorectal carcinoma,” Cancer Biology and Therapy, vol. 9, no. 3, pp. 246–252, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. B. M. Koorstra, S. M. Hong, C. Shi et al., “Widespread activation of the DNA damage response in human pancreatic intraepithelial neoplasia,” Modern Pathology, vol. 22, no. 11, pp. 1439–1445, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. A. J. Yoon, J. Shen, R. M. Santella, D. J. Zegarelli, R. Chen, and I. B. Weinstein, “Activated checkpoint kinase 2 expression and risk for oral squamous cell carcinoma,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 12, pp. 2768–2772, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Al-Ejeh, R. Kumar, A. Wiegmans, S. R. Lakhani, M. P. Brown, and K. K. Khanna, “Harnessing the complexity of DNA-damage response pathways to improve cancer treatment outcomes,” Oncogene, vol. 29, no. 46, pp. 6085–6098, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. W. Harper and S. J. Elledge, “The DNA damage response: ten years after,” Molecular Cell, vol. 28, no. 5, pp. 739–745, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. T. H. Stracker, T. Usui, and J. H. J. Petrini, “Taking the time to make important decisions: the checkpoint effector kinases Chk1 and Chk2 and the DNA damage response,” DNA Repair, vol. 8, no. 9, pp. 1047–1054, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Matsuoka, M. Huang, and S. J. Elledge, “Linkage of ATM to cell cycle regulation by the Chk2 protein kinase,” Science, vol. 282, no. 5395, pp. 1893–1897, 1998. View at Scopus
  11. J. Falck, N. Mailand, R. G. Syljuåsen, J. Bartek, and J. Lukas, “The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis,” Nature, vol. 410, no. 6830, pp. 842–847, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. I. M. Ward, X. Wu, and J. Chen, “Threonine 68 of Chk2 is phosphorylated at sites of DNA strand breaks,” Journal of Biological Chemistry, vol. 276, no. 51, pp. 47755–47758, 2001. View at Scopus
  13. A. J. Yoon, J. Shen, H. C. Wu et al., “Expression of activated checkpoint kinase 2 and histone 2AX in exfoliative oral cells after exposure to ionizing radiation,” Radiation Research, vol. 171, no. 6, pp. 771–775, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Stefanidis, D. Loutradis, L. V. Vassiliou et al., “Nevirapine induces growth arrest and premature senescence in human cervical carcinoma cells,” Gynecologic Oncology, vol. 111, no. 2, pp. 344–349, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. R. A. DiTullio, T. A. Mochan, M. Venere et al., “53BP1 functions in a ATM-dependent checkpoint pathway that is constitutively activated in human cancer,” Nature Cell Biology, vol. 4, no. 12, pp. 998–1002, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. I. M. Shih, J. J. C. Sheu, A. Santillan et al., “Amplification of a chromatin remodeling gene, Rsf-1/HBXAP, in ovarian carcinoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 39, pp. 14004–14009, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. T. L. Mao, C. Y. Hsu, M. J. Yen et al., “Expression of Rsf-1, a chromatin-remodeling gene, in ovarian and breast carcinoma,” Human Pathology, vol. 37, no. 9, pp. 1169–1175, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Nakayama, N. Nakayama, N. Jinawath et al., “Amplicon profiles in ovarian serous carcinomas,” International Journal of Cancer, vol. 120, no. 12, pp. 2613–2617, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Lukas, J. Falck, J. Bartkova, J. Bartek, and J. Lukas, “Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage,” Nature Cell Biology, vol. 5, no. 3, pp. 255–260, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. J. J. C. Sheu, B. Guan, J. H. Choi et al., “Rsf-1, a chromatin remodeling protein, induces DNA damage and promotes genomic instability,” Journal of Biological Chemistry, vol. 285, no. 49, pp. 38260–38269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. V. G. Gorgoulis, L. V. F. Vassiliou, P. Karakaidos et al., “Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions,” Nature, vol. 434, no. 7035, pp. 907–913, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Bartkova, Z. Hořejší, K. Koed et al., “DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis,” Nature, vol. 434, no. 7035, pp. 864–870, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Bartkova, N. Rezaei, M. Liontos et al., “Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints,” Nature, vol. 444, no. 7119, pp. 633–637, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Di Micco, M. Fumagalli, A. Cicalese et al., “Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication,” Nature, vol. 444, no. 7119, pp. 638–642, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. D. W. Kindelberger, Y. Lee, A. Miron et al., “Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: evidence for a causal relationship,” American Journal of Surgical Pathology, vol. 31, no. 2, pp. 161–169, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. C. P. Crum, R. Drapkin, A. Miron et al., “The distal fallopian tube: a new model for pelvic serous carcinogenesis,” Current Opinion in Obstetrics and Gynecology, vol. 19, no. 1, pp. 3–9, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. R. J. Kurman and I. M. Shih, “The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory,” American Journal of Surgical Pathology, vol. 34, no. 3, pp. 433–443, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Visvanathan, A. L. Gross, R. J. Kurman, R. Vang, and I. M. Shih, “Precursor lesions of high-grade serous ovarian carcinoma: morphological and molecular characteristics,” Journal of Oncology, Article ID 126295, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Salvador, B. Gilks, M. Köbel, D. Huntsman, B. Rosen, and D. Miller, “The fallopian tube: primary site of most pelvic high-grade serous carcinomas,” International Journal of Gynecological Cancer, vol. 19, no. 1, pp. 58–64, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Singer, R. J. Kurman, H. W. Chang, S. K. R. Cho, and I. M. Shih, “Diverse tumorigenic pathways in ovarian serous carcinoma,” American Journal of Pathology, vol. 160, no. 4, pp. 1223–1228, 2002. View at Scopus
  31. G. Singer, R. Oldt III, Y. Cohen et al., “Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma,” Journal of the National Cancer Institute, vol. 95, no. 6, pp. 484–486, 2003. View at Scopus
  32. K. Nakayama, N. Nakayama, R. J. Kurman et al., “Sequence mutations and amplification of PIK3CA and AKT2 genes in purified ovarian serous neoplasms,” Cancer Biology and Therapy, vol. 5, no. 7, pp. 779–785, 2006. View at Scopus
  33. S. Jones, T. L. Wang, I. M. Shih et al., “Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma,” Science, vol. 330, no. 6001, pp. 228–231, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. I. Meinhold-Heerlein, D. Bauerschlag, F. Hilpert et al., “Molecular and prognostic distinction between serous ovarian carcinomas of varying grade and malignant potential,” Oncogene, vol. 24, no. 6, pp. 1053–1065, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. I.-M. Shih, L. Chen, C. C. Wang, et al., “Distinct DNA methylation profiles in ovarian sreous neoplasms and their implications in ovarian carcinogenesis,” American Journal of Obstetrics & Gynecology, vol. 203, no. 6, pp. 584.e1–584.e22, 2010. View at Publisher · View at Google Scholar
  36. C. Kerzendorfer and M. O'Driscoll, “Human DNA damage response and repair deficiency syndromes: linking genomic instability and cell cycle checkpoint proficiency,” DNA Repair, vol. 8, no. 9, pp. 1139–1152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Lydall, “Taming the tiger by the tail: modulation of DNA damage responses by telomeres,” EMBO Journal, vol. 28, no. 15, pp. 2174–2187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. T. D. Halazonetis, V. G. Gorgoulis, and J. Bartek, “An oncogene-induced DNA damage model for cancer development,” Science, vol. 319, no. 5868, pp. 1352–1355, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. K. T. Kuo, T. L. Mao, Y. Feng et al., “DNA copy numbers profiles in affinity-purified ovarian clear cell carcinoma,” Clinical Cancer Research, vol. 16, no. 7, pp. 1997–2008, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. K. T. Kuo, B. Guan, Y. Feng et al., “Analysis of DNA copy number alterations in ovarian serous tumors identifies new molecular genetic changes in low-grade and high-grade carcinomas,” Cancer Research, vol. 69, no. 9, pp. 4036–4042, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. V. E. Anderson, M. I. Walton, P. D. Eve et al., “CCT241533 is a potent and selective inhibitor of CHK2 that potentiates the cytotoxicity of PARP inhibitors,” Cancer Research, vol. 71, no. 2, pp. 463–472, 2011. View at Publisher · View at Google Scholar