About this Journal Submit a Manuscript Table of Contents
Journal of Oncology
Volume 2012 (2012), Article ID 732874, 7 pages
http://dx.doi.org/10.1155/2012/732874
Review Article

MicroRNAs in Human Malignant Gliomas

Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan

Received 16 March 2012; Revised 20 May 2012; Accepted 21 May 2012

Academic Editor: Arrigo De Benedetti

Copyright © 2012 Masahiro Mizoguchi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. S. Phillips, S. Kharbanda, R. Chen et al., “Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis,” Cancer Cell, vol. 9, no. 3, pp. 157–173, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. R. G. W. Verhaak, K. A. Hoadley, E. Purdom et al., “Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1,” Cancer Cell, vol. 17, no. 1, pp. 98–110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. J. T. Huse, H. S. Phillips, and C. W. Brennan, “Molecular subclassification of diffuse gliomas: seeing order in the chaos,” Glia, vol. 59, no. 8, pp. 1190–1199, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Ambros, “The functions of animal microRNAs,” Nature, vol. 431, no. 7006, pp. 350–355, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Kozomara and S. Griffiths-Jones, “MiRBase: integrating microRNA annotation and deep-sequencing data,” Nucleic Acids Research, vol. 39, no. 1, pp. D152–D157, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Filipowicz, S. N. Bhattacharyya, and N. Sonenberg, “Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?” Nature Reviews Genetics, vol. 9, no. 2, pp. 102–114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Lu, G. Getz, E. A. Miska et al., “MicroRNA expression profiles classify human cancers,” Nature, vol. 435, no. 7043, pp. 834–838, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. Network TCGAr, “Comprehensive genomic characterization defines human glioblastoma genes and core pathways,” Nature, vol. 455, no. 7216, pp. 1061–1068, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. G. A. Calin, “Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 24, pp. 15524–15529, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. G. A. Calin, “Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 2999–3004, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. J. A. Chan, A. M. Krichevsky, and K. S. Kosik, “MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells,” Cancer Research, vol. 65, no. 14, pp. 6029–6033, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. S. A. Ciafrè, S. Galardi, A. Mangiola et al., “Extensive modulation of a set of microRNAs in primary glioblastoma,” Biochemical and Biophysical Research Communications, vol. 334, no. 4, pp. 1351–1358, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Papagiannakopoulos, A. Shapiro, and K. S. Kosik, “MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells,” Cancer Research, vol. 68, no. 19, pp. 8164–8172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Godlewski, M. O. Nowicki, A. Bronisz et al., “Targeting of the Bmi-1 oncogene/stem cell renewal factor by MicroRNA-128 inhibits glioma proliferation and self-renewal,” Cancer Research, vol. 68, no. 22, pp. 9125–9130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Sasayama, M. Nishihara, T. Kondoh, K. Hosoda, and E. Kohmura, “MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC,” International Journal of Cancer, vol. 125, no. 6, pp. 1407–1413, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Chen, J. A. L. Gelfond, L. M. McManus, and P. K. Shireman, “Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis,” BMC Genomics, vol. 10, article 407, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Mestdagh, P. Van Vlierberghe, A. De Weer et al., “A novel and universal method for microRNA RT-qPCR data normalization,” Genome Biology, vol. 10, no. 6, article R64, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Guan, M. Mizoguchi, K. Yoshimoto et al., “MiRNA-196 is upregulated in glioblastoma but not in anaplastic astrocytoma and has prognostic significance,” Clinical Cancer Research, vol. 16, no. 16, pp. 4289–4297, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Malzkorn, M. Wolter, F. Liesenberg et al., “Identification and functional characterization of microRNAs involved in the malignant progression of gliomas,” Brain Pathology, vol. 20, no. 3, pp. 539–550, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Kim, W. Huang, X. Jiang, B. Pennicooke, P. J. Park, and M. D. Johnson, “Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 5, pp. 2183–2188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. S. A. M. Rao, V. Santosh, and K. Somasundaram, “Genome-wide expression profiling identifies deregulated miRNAs in malignant astrocytoma,” Modern Pathology, vol. 23, no. 10, pp. 1404–1417, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Srinivasan, I. R. P. Patric, and K. Somasundaram, “A Ten-microRNA expression signature predicts survival in glioblastoma,” PLoS ONE, vol. 6, no. 3, Article ID e17438, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. T. M. Kim, W. Huang, R. Park, P. J. Park, and M. D. Johnson, “A developmental taxonomy of glioblastoma defined and maintained by microRNAs,” Cancer Research, vol. 71, no. 9, pp. 3387–3399, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. P. P. Medina, M. Nolde, and F. J. Slack, “OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma,” Nature, vol. 467, no. 7311, pp. 86–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Volinia, G. A. Calin, C. G. Liu et al., “A microRNA expression signature of human solid tumors defines cancer gene targets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 7, pp. 2257–2261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Gaur, D. A. Jewell, Y. Liang et al., “Characterization of microRNA expression levels and their biological correlates in human cancer cell lines,” Cancer Research, vol. 67, no. 6, pp. 2456–2468, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Bloomston, W. L. Frankel, F. Petrocca et al., “MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis,” Journal of the American Medical Association, vol. 297, no. 17, pp. 1901–1908, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Yekta, I. H. Shih, and D. P. Bartel, “MicroRNA-directed cleavage of HOXB8 mRNA,” Science, vol. 304, no. 5670, pp. 594–596, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Murat, E. Migliavacca, T. Gorlia et al., “Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma,” Journal of Clinical Oncology, vol. 26, no. 18, pp. 3015–3024, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Gaspar, L. Marshall, L. Perryman et al., “MGMT-independent temozolomide resistance in pediatric glioblastoma cells associated with a PI3-kinase-mediated HOX/stem cell gene signature,” Cancer Research, vol. 70, no. 22, pp. 9243–9252, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Luthra, R. R. Singh, M. G. Luthra et al., “MicroRNA-196a targets annexin A1: a microRNA-mediated mechanism of annexin A1 downregulation in cancers,” Oncogene, vol. 27, no. 52, pp. 6667–6678, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Lakomy, J. Sana, S. Hankeova et al., “MiR-195, miR-196b, miR-181c, miR-21 expression levels and O-6-methylguanine-DNA methyltransferase methylation status are associated with clinical outcome in glioblastoma patients,” Cancer Science, vol. 102, no. 12, pp. 2186–2190, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Gabriely, M. Yi, R. S. Narayan et al., “Human glioma growth is controlled by microRNA-10b,” Cancer Research, vol. 71, no. 10, pp. 3563–3572, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Ma, J. Teruya-Feldstein, and R. A. Weinberg, “Tumour invasion and metastasis initiated by microRNA-10b in breast cancer,” Nature, vol. 449, no. 7163, pp. 682–688, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. C. H. Moriarty, B. Pursell, and A. M. Mercurio, “miR-10b targets Tiam1: implications for Rac activation and carcinoma migration,” Journal of Biological Chemistry, vol. 285, no. 27, pp. 20541–20546, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Papagiannakopoulos, D. Friedmann-Morvinski, P. Neveu et al., “Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases,” Oncogene, vol. 31, no. 15, pp. 1884–1895, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. A. M. Krichevsky, “A microRNA array reveals extensive regulation of microRNAs during brain development,” RNA, vol. 9, no. 10, pp. 1274–1281, 2003. View at Scopus
  39. K. S. Kosik and A. M. Krichevsky, “The elegance of the microRNAs: a neuronal perspective,” Neuron, vol. 47, no. 6, pp. 779–782, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Stupp, W. P. Mason, M. J. van den Bent et al., “Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma,” The New England Journal of Medicine, vol. 352, no. 10, pp. 987–996, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Reya, S. J. Morrison, M. F. Clarke, and I. L. Weissman, “Stem cells, cancer, and cancer stem cells,” Nature, vol. 414, no. 6859, pp. 105–111, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Silber, D. A. Lim, C. Petritsch et al., “miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells,” BMC Medicine, vol. 6, article 14, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Yunqing, F. Guessous, Z. Ying et al., “MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes,” Cancer Research, vol. 69, no. 19, pp. 7569–7576, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. F. Guessous, Y. Zhang, A. Kofman et al., “microRNA-34a is tumor suppressive in brain tumors and glioma stem cells,” Cell Cycle, vol. 9, no. 6, pp. 1031–1036, 2010. View at Scopus
  45. B. Kefas, L. Comeau, D. H. Floyd et al., “The neuronal microRNA miR-326 acts in a feedback loop with notch and has therapeutic potential against brain tumors,” Journal of Neuroscience, vol. 29, no. 48, pp. 15161–15168, 2009. View at Publisher · View at Google Scholar · View at Scopus