About this Journal Submit a Manuscript Table of Contents
Journal of Oncology
Volume 2012 (2012), Article ID 879623, 23 pages
http://dx.doi.org/10.1155/2012/879623
Review Article

Tumor Angiogenesis as a Target for Dietary Cancer Prevention

The Angiogenesis Foundation, One Broadway, 14th Floor, Cambridge, MA 02142, USA

Received 17 June 2011; Accepted 4 July 2011

Academic Editor: Kalpna Gupta

Copyright © 2012 William W. Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Global Action Against Cancer, World Health Organization and International Union Against Cancer, 2005, http://www.who.int/cancer/media/GlobalActionCancerEnglfull.pdf.
  2. “State bite: lifetime risk of being diagnosed with cancer,” Journal of the National Cancer Institute, vol. 93, no. 10, p. 742, 2001.
  3. A. B. Mariotto, K. R. Yabroff, Y. Shao, E. J. Feuer, and M. L. Brown, “Projections of the cost of cancer care in the United States: 2010–2020,” Journal of the National Cancer Institute, vol. 103, no. 2, pp. 117–128, 2011. View at Publisher · View at Google Scholar · View at PubMed
  4. Chemoprevention Working Group, “Prevention of cancer in the next millennium: report of the Chemoprevention Working Group to the American Association for Cancer Research,” Cancer Research, vol. 59, no. 19, pp. 4743–4758, 1999. View at Scopus
  5. J. Folkman, “What is the evidence that tumors are angiogenesis dependent?” Journal of the National Cancer Institute, vol. 82, no. 1, pp. 4–6, 1990. View at Scopus
  6. J. Folkman, E. Merler, C. Abernathy, and G. Williams, “Isolation of a tumor factor responsible or angiogenesis,” Journal of Experimental Medicine, vol. 133, no. 2, pp. 275–288, 1971. View at Scopus
  7. J. Folkman, “Tumor angiogenesis: therapeutic implications,” The New England Journal of Medicine, vol. 285, no. 21, pp. 1182–1186, 1971. View at Scopus
  8. D. Ribatti, A. Vacca, and F. Dammacco, “The role of the vascular phase in solid tumor growth: a historical review,” Neoplasia, vol. 1, no. 4, pp. 293–302, 1999. View at Scopus
  9. J. Folkman, “Angiogenesis in cancer, vascular, rheumatoid and other disease,” Nature Medicine, vol. 1, no. 1, pp. 27–31, 1995. View at Scopus
  10. R. S. Kerbel, “Tumor angiogenesis: past, present and the near future,” Carcinogenesis, vol. 21, no. 3, pp. 505–515, 2000. View at Scopus
  11. N. Weidner, “Angiogenesis as a predictor of clinical outcome in cancer patients,” Human Pathology, vol. 31, no. 4, pp. 403–405, 2000. View at Scopus
  12. J. Folkman, “Tumor angiogenesis,” in Harrison's Textbook of Internal Medicine, E. Braunwald, A. S. Fauci, D. L. Kasper, et al., Eds., pp. 132–152, McGraw-Hill, New York, NY, USA, 15th edition, 2000.
  13. M. H. Mangi and A. C. Newland, “Angiogenesis and angiogenic mediators in haematological malignancies,” British Journal of Haematology, vol. 111, no. 1, pp. 43–51, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. K. A. Brandvold, P. Neiman, and A. Ruddell, “Angiogenesis is an early event in the generation of myc-induced lymphomas,” Oncogene, vol. 19, no. 23, pp. 2780–2785, 2000. View at Scopus
  15. T. Padró, S. Ruiz, R. Bieker et al., “Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia,” Blood, vol. 95, no. 8, pp. 2637–2644, 2000. View at Scopus
  16. S. V. Rajkumar and P. R. Greipp, “Angiogenesis in multiple myeloma,” British Journal of Haematology, vol. 113, no. 3, p. 565, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Pruneri, F. Bertolini, D. Soligo et al., “Angiogenesis in myelodysplastic syndromes,” British Journal of Cancer, vol. 81, no. 8, pp. 1398–1401, 1999. View at Scopus
  18. J. Rak, J. Filmus, and R. S. Kerbel, “Reciprocal paracrine interactions between tumour cells and endothelial cells: the 'angiogenesis progression' hypothesis,” European Journal of Cancer Part A, vol. 32, no. 14, pp. 2438–2450, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Folkman, “Angiogenesis-dependent diseases,” Seminars in Oncology, vol. 28, no. 6, pp. 536–542, 2001. View at Scopus
  20. W. W. Li, M. Hutnik, and V. W. Li, “Angiogenesis-based medicine: principles and practice for disease prevention and intervention,” in Angiogenesis: Basic Science and Clinical Applications, M. E. Maragoudakis and E. Papadimitriou, Eds., pp. 377–417, 2007.
  21. Angiogenesis Foundation, 2011.
  22. 2011, http://www.clinicaltrials.gov/.
  23. F. Tosetti, N. Ferrari, S. de Flora, and A. Albini, “Angioprevention: angiogenesis is a common and key target for cancer chemopreventive agents,” The Federation of American Societies for Experimental Biology Journal, vol. 16, no. 1, pp. 2–14, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. A. Albini, D. M. Noonan, and N. Ferrari, “Molecular pathways for cancer angioprevention,” Clinical Cancer Research, vol. 13, no. 15, part 1, pp. 4320–4325, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. G. Helmlinger, F. Yuan, M. Dellian, and R. K. Jain, “Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation,” Nature Medicine, vol. 3, no. 2, pp. 177–182, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. C. E. Gargett and P. A. W. Rogers, “Human endometrial angiogenesis,” Reproduction, vol. 121, no. 2, pp. 181–186, 2001. View at Scopus
  27. T. M. Hazzard and R. L. Stouffer, “Angiogenesis in ovarian follicular and luteal development,” Baillière's Clinical Obstetrics and Gynaecology, vol. 14, no. 6, pp. 883–900, 2000. View at Publisher · View at Google Scholar · View at PubMed
  28. L. P. Reynolds and D. A. Redmer, “Angiogenesis in the placenta,” Biology of Reproduction, vol. 64, no. 4, pp. 1033–1040, 2001. View at Scopus
  29. M. G. Tonnesen, X. Feng, and R. A. F. Clark, “Angiogenesis in wound healing,” Journal of Investigative Dermatology Symposium Proceedings, vol. 5, no. 1, pp. 40–46, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. W. W. Li, K. E. Talcott, A. W. Zhai, E. A. Kruger, and V. W. Li, “The role of therapeutic angiogenesis in tissue repair and regeneration,” Advances in Skin & Wound Care., vol. 18, no. 9, pp. 491–500, 2006. View at Scopus
  31. Y. Shing, J. Folkman, R. Sullivan, C. Butterfield, J. Murray, and M. Klagsbrun, “Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor,” Science, vol. 223, no. 4642, pp. 1296–1298, 1984. View at Scopus
  32. D. R. Senger, S. J. Galli, A. M. Dvorak, C. A. Perruzzi, V. Susan Harvey, and H. F. Dvorak, “Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid,” Science, vol. 219, no. 4587, pp. 983–985, 1983. View at Scopus
  33. D. W. Leung, G. Cachianes, W. J. Kuang, D. V. Goeddel, and N. Ferrara, “Vascular endothelial growth factor is a secreted angiogenic mitogen,” Science, vol. 246, no. 4935, pp. 1306–1309, 1989. View at Scopus
  34. J. E. Nör, J. Christensen, D. J. Mooney, and P. J. Polverini, “Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression,” American Journal of Pathology, vol. 154, no. 2, pp. 375–384, 1999. View at Scopus
  35. W. Risau, “Mechanisms of angiogenesis,” Nature, vol. 386, no. 6626, pp. 671–674, 1997. View at Scopus
  36. A. Adini, T. Kornaga, F. Firoozbakht, and L. E. Benjamin, “Placental growth factor is a survival factor for tumor endothelial cells and macrophages,” Cancer Research, vol. 62, no. 10, pp. 2749–2752, 2002. View at Scopus
  37. K. Hattori, B. Heissig, Y. Wu et al., “Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone-marrow microenvironment,” Nature Medicine, vol. 8, no. 8, pp. 841–849, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. J. Folkman and M. Klagsbrun, “Angiogenic factors,” Science, vol. 235, no. 4787, pp. 442–447, 1987. View at Scopus
  39. R. Thommen, R. Humar, G. Misevic et al., “PDGF-BB increases endothelial migration and cord movements during angiogenesis in vitro,” Journal of Cellular Biochemistry, vol. 64, no. 3, pp. 403–413, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. K. S. Russell, D. F. Stern, P. J. Polverini, and J. R. Bender, “Neuregulin activation of ErbB receptors in vascular endothelium leads to angiogenesis,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 277, no. 6, pp. H2205–H2211, 1999. View at Scopus
  41. P. Gillis, U. Savla, O. V. Volpert et al., “Keratinocyte growth factor induces angiogenesis and protects endothelial barrier function,” Journal of Cell Science, vol. 112, no. 12, pp. 2049–2057, 1999. View at Scopus
  42. V. W. Li, R. D. Folkerth, H. Watanabe, et al., “Basic fibroblast growth factor in the cerebrospinal fluid of children with brain tumours—correlation with microvessel count in the tumour,” The Lancet, vol. 344, pp. 82–86, 1994.
  43. M. Nguyen, “Angiogenic factors as tumor markers,” Investigational New Drugs, vol. 15, no. 1, pp. 29–37, 1997. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Brem and J. Folkman, “Inhibition of tumor angiogenesis mediated by cartilage,” Journal of Experimental Medicine, vol. 141, no. 2, pp. 427–439, 1975. View at Scopus
  45. M. A. Moses, D. Wiederschain, I. Wu et al., “Troponin I is present in human cartilage and inhibits angiogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 6, pp. 2645–2650, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. L. Feldman and C. Rouleau, “Troponin I inhibits capillary endothelial cell proliferation by interaction with the cell's bFGF receptor,” Microvascular Research, vol. 63, no. 1, pp. 41–49, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. I. Inoki, T. Shiomi, G. Hashimoto et al., “Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis,” The Federation of American Societies for Experimental Biology Journal, vol. 16, no. 2, pp. 219–221, 2002. View at Scopus
  48. K. Kusafuka, Y. Hiraki, C. Shukunami, T. Kayano, and T. Takemura, “Cartilage-specific matrix protein, chondromodulin-I (ChM-I), is a strong angio-inhibitor in endochondral ossification of human neonatal vertebral tissues in vivo: relationship with angiogenic factors in the cartilage,” Acta Histochemica, vol. 104, no. 2, pp. 167–175, 2002. View at Scopus
  49. C. D. L. Davies, R. J. Melder, L. L. Munn, C. Mouta-Carreira, R. K. Jain, and Y. Boucher, “Decorin inhibits endothelial migration and tube-like structure formation: role of thrombospondin-1,” Microvascular Research, vol. 62, no. 1, pp. 26–42, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. N. Liu, R. K. Lapcevich, C. B. Underhill et al., “Metastatin: a hyaluronan-binding complex from cartilage that inhibits tumor growth,” Cancer Research, vol. 61, no. 3, pp. 1022–1028, 2001. View at Scopus
  51. D. W. Dawson, O. V. Volpert, P. Gillis et al., “Pigment epithelium-derived factor: a potent inhibitor of angiogenesis,” Science, vol. 285, no. 5425, pp. 245–248, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. G. A. Lutty, D. C. Thompson, and J. Y. Gallup, “Vitreous: an inhibitor of retinal extract-induced neovascularization,” Investigative Ophthalmology and Visual Science, vol. 24, no. 1, pp. 52–56, 1983.
  53. G. A. Williams, R. Eisenstein, B. Schumacher, K. C. Hsiao, and D. Grant, “Inhibitor of vascular endothelial cell growth in the lens,” American Journal of Ophthalmology, vol. 97, no. 3, pp. 366–371, 1984. View at Scopus
  54. E. C. Mun, S. R. Doctrow, R. Carter, et al., “An angiogenesis inhibitor from the cornea,” Investigative Ophthalmology & Visual Science, vol. 30, p. 151, 1989.
  55. W. Auerbach and R. Auerbach, “Angiogenesis inhibition: a review,” Pharmacology and Therapeutics, vol. 63, no. 3, pp. 265–311, 1994. View at Publisher · View at Google Scholar · View at Scopus
  56. K. M. Dameron, O. V. Volpert, M. A. Tainsky, and N. Bouck, “Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1,” Science, vol. 265, no. 5178, pp. 1582–1584, 1994. View at Scopus
  57. J. E. Nör, R. S. Mitra, M. M. Sutorik, D. J. Mooney, V. P. Castle, and P. J. Polverini, “Thrombospondin-1 induces endothelial cell apoptosis and inhibits angiogenesis by activating the caspase death pathway,” Journal of Vascular Research, vol. 37, no. 3, pp. 209–218, 2000. View at Scopus
  58. M. Streit, L. Riccardi, P. Velasco et al., “Thrombospondin-2: a potent endogenous inhibitor of tumor growth and angiogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 26, pp. 14888–14893, 1999. View at Publisher · View at Google Scholar · View at Scopus
  59. R. K. Singh, M. Gutman, C. D. Bucana, R. Sanchez, N. Llansa, and I. J. Fidler, “Interferons α and β down-regulate the expression of basic fibroblast growth factor in human carcinomas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 10, pp. 4562–4566, 1995. View at Scopus
  60. R. Friesel, A. Komoriya, and T. Maciag, “Inhibition of endothelial cell proliferation by gamma-interferon,” Journal of Cell Biology, vol. 104, no. 3, pp. 689–696, 1987. View at Scopus
  61. G. D. Kamphaus, P. C. Colorado, D. J. Panka et al., “Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth,” Journal of Biological Chemistry, vol. 275, no. 2, pp. 1209–1215, 2000. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Maeshima, M. Manfredi, C. Reimerli et al., “Identification of the anti-angiogenic site within vascular basement membrane-derived tumstatin,” Journal of Biological Chemistry, vol. 276, no. 18, pp. 15240–15248, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. P. C. Colorado, A. Torre, G. Kamphaus et al., “Anti-angiogenic cues from vascular basement membrane collagen,” Cancer Research, vol. 60, no. 9, pp. 2520–2526, 2000. View at Scopus
  64. M. S. O'Reilly, L. Holmgren, Y. Shing et al., “Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma,” Cell, vol. 79, no. 2, pp. 315–328, 1994. View at Publisher · View at Google Scholar · View at Scopus
  65. H. H. Heidtmann, D. M. Nettelbeck, A. Mingels, R. Jäger, H. G. Welker, and R. E. Kontermann, “Generation of angiostatin-like fragments from plasminogen by prostate-specific antigen,” British Journal of Cancer, vol. 81, no. 8, pp. 1269–1272, 1999. View at Scopus
  66. S. Gately, P. Twardowski, M. S. Stack et al., “The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 20, pp. 10868–10872, 1997. View at Publisher · View at Google Scholar · View at Scopus
  67. M. S. O'Reilly, T. Boehm, Y. Shing et al., “Endostatin: an endogenous inhibitor of angiogenesis and tumor growth,” Cell, vol. 88, no. 2, pp. 277–285, 1997. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Dixelius, H. Larsson, T. Sasaki et al., “Endostatin-induced tyrosine kinase signaling through the Shb adaptor protein regulates endothelial cell apoptosis,” Blood, vol. 95, no. 11, pp. 3403–3411, 2000. View at Scopus
  69. M. S. O'Reilly, L. Holmgren, Y. Shing et al., “Angiostatin: a circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 59, pp. 471–482, 1994. View at Scopus
  70. R. S. Herbst, K. R. Hess, H. T. Tran et al., “Phase I study of recombinant human endostatin in patients with advanced solid tumors,” Journal of Clinical Oncology, vol. 20, no. 18, pp. 3792–3803, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. D. Hanahan and J. Folkman, “Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis,” Cell, vol. 86, no. 3, pp. 353–364, 1996. View at Publisher · View at Google Scholar · View at Scopus
  72. K. H. Plate, G. Breier, B. Millauer, A. Ullrich, and W. Risau, “Up-regulation of vascular endothelial growth factor and its cognate receptors in a rat glioma model of tumor angiogenesis,” Cancer Research, vol. 53, no. 23, pp. 5822–5827, 1993. View at Scopus
  73. F. Rastinejad, P. J. Polverini, and N. P. Bouck, “Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene,” Cell, vol. 56, no. 3, pp. 345–355, 1989. View at Scopus
  74. K. Ohno-Matsui, I. Morita, J. Tombran-Tink et al., “Novel mechanism for age-related macular degeneration: an equilibrium shift between the angiogenesis factors VEGF and PEDF,” Journal of Cellular Physiology, vol. 189, no. 3, pp. 323–333, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. D. Lyden, A. Z. Young, D. Zagzag et al., “Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts,” Nature, vol. 401, no. 6754, pp. 670–677, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. T. A. Baudino, C. McKay, H. Pendeville-Samain et al., “C-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression,” Genes and Development, vol. 16, no. 19, pp. 2530–2543, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. F. Vikhanskaya, M. R. Bani, P. Borsotti et al., “P73 overexpression increases VEGF and reduces thrombospondin-1 production: implications for tumor angiogenesis,” Oncogene, vol. 20, no. 50, pp. 7293–7300, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. L. Lu, K. Holmqvist, M. Cross, and M. Welsh, “Role of the Src homology 2 domain-containing protein Shb in murine brain endothelial cell proliferation and differentiation,” Cell Growth and Differentiation, vol. 13, no. 3, pp. 141–148, 2002. View at Scopus
  79. J. Rak, Y. Mitsuhashi, L. Bayko et al., “Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis,” Cancer Research, vol. 55, no. 20, pp. 4575–4580, 1995. View at Scopus
  80. S. Grugel, G. Finkenzeller, K. Weindel, B. Barleon, and D. Marme, “Both v-Ha-Ras and v-Raf stimulate expression of the vascular endothelial growth factor in NIH 3T3 cells,” Journal of Biological Chemistry, vol. 270, no. 43, pp. 25915–25919, 1995. View at Publisher · View at Google Scholar · View at Scopus
  81. J. L. Arbiser, M. A. Moses, C. A. Fernandez et al., “Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 3, pp. 861–866, 1997. View at Publisher · View at Google Scholar · View at Scopus
  82. J. Schlessinger, “New roles for Src kinases in control of cell survival and angiogenesis,” Cell, vol. 100, no. 3, pp. 293–296, 2000. View at Scopus
  83. R. Kumar and R. Yarmand-Bagheri, “The role of HER2 in angiogenesis,” Seminars in Oncology, vol. 28, no. 5, supplement 16, pp. 27–32, 2001. View at Scopus
  84. D. Giri and M. Ittmann, “Inactivation of the PTEN tumor suppressor gene is associated with increased angiogenesis in clinically localized prostate carcinoma,” Human Pathology, vol. 30, no. 4, pp. 419–424, 1999. View at Scopus
  85. P. P. Claudio, P. Stiegler, C. M. Howard et al., “RB2/p130 gene-enhanced expression down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in vivo,” Cancer Research, vol. 61, no. 2, pp. 462–468, 2001. View at Scopus
  86. C. Blancher, J. W. Moore, N. Robertson, and A. L. Harris, “Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1α, HIF-2α, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3-kinase/Akt signaling pathway,” Cancer Research, vol. 61, no. 19, pp. 7349–7355, 2001. View at Scopus
  87. C. Y. Li, S. Shan, Q. Huang et al., “Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models,” Journal of the National Cancer Institute, vol. 92, no. 2, pp. 143–147, 2000. View at Scopus
  88. J. Holash, P. C. Maisonpierre, D. Compton et al., “Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF,” Science, vol. 284, no. 5422, pp. 1994–1998, 1999. View at Publisher · View at Google Scholar · View at Scopus
  89. J. Folkman, “Incipient angiogenesis,” Journal of the National Cancer Institute, vol. 92, no. 2, pp. 94–95, 2000. View at Scopus
  90. L. Holmgren, M. S. O'Reilly, and J. Folkman, “Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression,” Nature Medicine, vol. 1, no. 2, pp. 149–153, 1995. View at Scopus
  91. W. W. Li, “Tumor angiogenesis: molecular pathology, therapeutic targeting, and imaging,” Academic Radiology, vol. 7, no. 10, pp. 800–811, 2000. View at Scopus
  92. D. Hanahan, “Heritable formation of pancreatic β-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes,” Nature, vol. 315, no. 6015, pp. 115–122, 1985. View at Scopus
  93. J. Folkman and D. Hanahan, “Expression of the angiogenic phenotype during development of murine and human cancer,” in Origins of Human Cancer: A Comprehensive Review, J. Brugge, T. Curran, E. Harlow, et al., Eds., pp. 803–814, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 1991.
  94. J. Folkman, K. Watson, D. Ingber, and D. Hanahan, “Induction of angiogenesis during the transition from hyperplasia to neoplasia,” Nature, vol. 339, no. 6219, pp. 58–61, 1989. View at Scopus
  95. M. Lacey, S. Alpert, and D. Hanahan, “Bovine papillomavirus genome elicits skin tumours in transgenic mice,” Nature, vol. 322, no. 6080, pp. 609–612, 1986. View at Scopus
  96. J. Kandel, E. Bossy-Wetzel, F. Radvanyi, M. Klagsbrun, J. Folkman, and D. Hanahan, “Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma,” Cell, vol. 66, no. 6, pp. 1095–1104, 1991. View at Scopus
  97. G. Bergers, D. Hanahan, and L. M. Coussens, “Angiogenesis and apoptosis are cellular parameters of neoplastic progression in transgenic mouse models of tumorigenesis,” International Journal of Developmental Biology, vol. 42, no. 7, pp. 995–1002, 1998. View at Scopus
  98. L. M. Coussens, W. W. Raymond, G. Bergers et al., “Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis,” Genes and Development, vol. 13, no. 11, pp. 1382–1397, 1999. View at Scopus
  99. K. Norrby, “Mast cells and angiogenesis: review article,” Acta Pathologica, Microbiologica et Immunologica Scandinavica, vol. 110, no. 5, pp. 355–371, 2002. View at Publisher · View at Google Scholar · View at Scopus
  100. D. Ribatti, E. Crivellato, L. Candussio et al., “Mast cells and their secretory granules are angiogenic in the chick embryo chorioallantoic membrane,” Clinical and Experimental Allergy, vol. 31, no. 4, pp. 602–608, 2001. View at Publisher · View at Google Scholar · View at Scopus
  101. K. Smith-McCune, Y. H. Zhu, D. Hanahan, and J. Arbeit, “Cross-species comparison of angiogenesis during the premalignant stages of squamous carcinogenesis in the human cervix and K14-HPV16 transgenic mice,” Cancer Research, vol. 57, no. 7, pp. 1294–1300, 1997. View at Scopus
  102. J. Folkman, “Tumor angiogenesis,” in Cancer Biology, F. F. Becker, Ed., vol. 3 of Biology of Tumors, pp. 355–388, Plenum Press, New York, NY, USA, 1975.
  103. F. Wurschmidt, H. P. Beck-Bornholdt, and H. Vogler, “Radiobiology of the rhabdomyosarcoma R1H of the rat: influence of the size of irradiation field on tumor response, tumor bed effect, and neovascularization kinetics,” International Journal of Radiation Oncology Biology Physics, vol. 18, no. 4, pp. 879–882, 1990. View at Scopus
  104. H. Yamaura, K. Yamada, and T. Matsuzawa, “Radiation effect on the proliferating capillaries in rat transparent chambers,” International Journal of Radiation Biology, vol. 30, no. 2, pp. 179–187, 1976. View at Scopus
  105. M. A. Gimbrone Jr., S. B. Leapman, R. S. Cotran, and J. Folkman, “Tumor dormancy in vivo by prevention of neovascularization,” Journal of Experimental Medicine, vol. 136, no. 2, pp. 261–276, 1972. View at Scopus
  106. J. Folkman, “Tumor angiogenesis and tissue factor,” Nature Medicine, vol. 2, no. 2, pp. 167–168, 1996. View at Publisher · View at Google Scholar · View at Scopus
  107. R. A. Modzelewski, P. Davies, S. C. Watkins, R. Auerbach, M. J. Chang, and C. S. Johnson, “Isolation and identification of fresh tumor-derived endothelial cells from a murine RIF-1 fibrosarcoma,” Cancer Research, vol. 54, no. 2, pp. 336–339, 1994. View at Scopus
  108. W. D. Thompson, K. J. Shiach, and R. A. Fraser, “Tumours acquire their vasculature by vessel incorporation, not vessel ingrowth,” Journal of Pathology, vol. 151, no. 4, pp. 323–332, 1987. View at Scopus
  109. I. J. Fidler and L. M. Ellis, “The implications of angiogenesis for the biology and therapy of cancer metastasis,” Cell, vol. 79, no. 2, pp. 185–188, 1994. View at Publisher · View at Google Scholar · View at Scopus
  110. T. P. Butler and P. M. Gullino, “Quantitation of cell shedding into efferent blood of mammary adenocarcinoma,” Cancer Research, vol. 35, no. 3, pp. 512–516, 1975. View at Scopus
  111. J. Folkman, “Antiangiogenesis agents,” in Cancer Principles & Practice of Oncology, V. T. DeVita, S. Hellman, and S. A. Rosenberg, Eds., pp. 509–519, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 6th edition, 2001.
  112. R. L. Engerman, D. Pfaffenbach, and M. D. Davis, “Cell turnover of capillaries,” Laboratory Investigation, vol. 17, no. 6, pp. 738–743, 1967. View at Scopus
  113. B. Hobson and J. Denekamp, “Endothelial proliferation in tumours and normal tissues: continuous labelling studies,” British Journal of Cancer, vol. 49, no. 4, pp. 405–413, 1984. View at Scopus
  114. I. F. Tannock, “Population kinetics of carcinoma cells, capillary endothelial cells, and fibroblasts in a transplanted mouse mammary tumor,” Cancer Research, vol. 30, no. 10, pp. 2470–2476, 1970. View at Scopus
  115. D. H. Ausprunk and J. Folkman, “Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis,” Microvascular Research, vol. 14, no. 1, pp. 53–65, 1977. View at Scopus
  116. C. W. White, H. M. Sondheimer, E. C. Crouch, H. Wilson, and L. L. Fan, “Treatment of pulmonary hemangiomatosis with recombinant interferon alfa-2a,” The New England Journal of Medicine, vol. 320, no. 18, pp. 1197–1200, 1989. View at Scopus
  117. E. A. Kruger and W. D. Figg, “TNP-470: an angiogenesis inhibitor in clinical development for cancer,” Expert Opinion on Investigational Drugs, vol. 9, no. 6, pp. 1383–1396, 2000. View at Scopus
  118. J. M. Pluda, “Tumor-associated angiogenesis: mechanisms, clinical implications, and therapeutic strategies,” Seminars in Oncology, vol. 24, no. 2, pp. 203–218, 1997.
  119. J. Folkman, P. Hahnfeldt, and L. Hlatky, “The logic of anti-angiogenic gene therapy,” in The Development of Human Gene Therapy, T. Friedman, Ed., pp. 527–543, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 1998.
  120. R. S. Herbst, A. T. Lee, H. T. Tran, and J. L. Abbruzzese, “Clinical studies of angiogenesis inhibitors: the University of Texas MD Anderson Center Trial of Human Endostatin,” Current Oncology Reports, vol. 3, no. 2, pp. 131–140, 2001. View at Scopus
  121. S. A. Hill, G. M. Tozer, G. R. Pettit, and D. J. Chaplin, “Preclinical evaluation of the antitumour activity of the novel vascular targeting agent Oxi 4503,” Anticancer Research, vol. 22, no. 3, pp. 1453–1458, 2002.
  122. H. Goto, S. Yano, H. Zhang et al., “Activity of a new vascular targeting agent, ZD6126, in pulmonary metastases by human lung adenocarcinoma in nude mice,” Cancer Research, vol. 62, no. 13, pp. 3711–3715, 2002. View at Scopus
  123. D. W. Siemann, E. Mercer, S. Lepler, and A. M. Rojiani, “Vascular targeting agents enhance chemotherapeutic agent activities in solid tumor therapy,” International Journal of Cancer, vol. 99, no. 1, pp. 1–6, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  124. H. Brem and J. Folkman, “Analysis of experimental antiangiogenic therapy,” Journal of Pediatric Surgery, vol. 28, no. 3, pp. 445–451, 1993. View at Publisher · View at Google Scholar · View at Scopus
  125. W. W. Li, V. W. Li, R. Casey, et al., “Clinical trials of angiogenesis based therapies: overview and new guiding principles,” in Angiogenesis Models, Modulators and Clinical Application, M. Maragoudakis, Ed., pp. 475–492, Plenum Press, New York, NY, USA, 1998.
  126. N. B. Teo, B. S. Shoker, L. Martin, J. P. Sloane, and C. Holcombe, “Angiogenesis in pre-invasive cancers,” Anticancer Research, vol. 22, no. 4, pp. 2061–2072, 2002. View at Scopus
  127. P. Vajkoczy, M. Farhadi, A. Gaumann et al., “Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2,” Journal of Clinical Investigation, vol. 109, no. 6, pp. 777–785, 2002. View at Publisher · View at Google Scholar · View at Scopus
  128. A. H. S. Lee, L. C. Happerfield, L. G. Borrow, and R. R. Millis, “Angiogenesis and inflammation in ductal carcinoma in situ of the breast,” Journal of Pathology, vol. 181, no. 2, pp. 200–206, 1997. View at Publisher · View at Google Scholar
  129. A. Fisseler-Eckhoff, D. Rothstein, and K. M. Müller, “Neavascularization in hyperplastic, metaplastic and potentially preneoplastic lesions of the bronchial mucosa,” Virchows Archiv, vol. 429, no. 2-3, pp. 95–100, 1996.
  130. M. P. Wong, N. Cheung, S. T. Yuen, S. Y. Leung, and L. P. Chung, “Vascular endothelial growth factor is up-regulated in the early pre-malignant stage of colorectal tumour progression,” International Journal of Cancer, vol. 81, no. 6, pp. 845–850, 1999. View at Publisher · View at Google Scholar · View at Scopus
  131. A. Dellas, H. Moch, and E. Schultheiss, “Angiogenesis in cervical neoplasia microvessel quantification in precancerous lesions and invasive carcinomas with clinicopathological correlations,” Gynecologic Oncology, vol. 67, no. 1, pp. 27–33, 1997.
  132. K. K. Smith-McCune and N. Weidner, “Demonstration and characterization of the angiogenic properties of cervical dysplasia,” Cancer Research, vol. 54, no. 3, pp. 800–804, 1994. View at Scopus
  133. G. W. Chodak, C. Haudenschild, R. F. Gittes, and J. Folkman, “Angiogenic activity as a marker of neoplastic and preneoplastic lesions of the human bladder,” Annals of Surgery, vol. 192, no. 6, pp. 762–771, 1980. View at Scopus
  134. J. C. Watson, E. Sutanto-Ward, M. Osaku, J. K. Weinstein, J. S. Babb, and E. R. Sigurdson, “Importance of timing and length of administration of angiogenesis inhibitor TNP-470 in the treatment of K12/TRb colorectal hepatic metastases in BD-IX rats,” Surgery, vol. 126, no. 2, pp. 358–363, 1999. View at Publisher · View at Google Scholar · View at Scopus
  135. Y. Fong, L. H. Blumgart, and A. M. Cohen, “Surgical treatment of colorectal metastases to the liver,” Ca-A Cancer Journal for Clinicians, vol. 45, no. 1, pp. 50–62, 1995. View at Scopus
  136. S. Paku and K. Lapis, “Morphological aspects of angiogenesis in experimental liver metastases,” American Journal of Pathology, vol. 143, no. 3, pp. 926–936, 1993. View at Scopus
  137. D. Ingber, T. Fujita, S. Kishimoto, et al., “Synthetic analogs of fumagillin that inhibit angiogenesis and suppress tumour growth,” Nature, vol. 348, pp. 555–557, 1990. View at Publisher · View at Google Scholar · View at PubMed
  138. Y. Suganuma, T. Takahashi, H. Taniguchi, K. Takeuchi, Y. Ueshima, and H. Tanaka, “Inhibitory effect of anti-angiogenic agent TNP-470 (AGM-14710) on liver metastasis of VX2 carcinoma in rabbits,” Regional Cancer Treatment, vol. 7, no. 3-4, pp. 160–162, 1994. View at Scopus
  139. S. Shusterman, S. A. Grupp, R. Barr, D. Carpentieri, H. Zhao, and J. M. Maris, “The angiogenesis inhibitor TNP-470 effectively inhibits human neuroblastoma xenograft growth, especially in the setting of subclinical disease,” Clinical Cancer Research, vol. 7, no. 4, pp. 977–984, 2001. View at Scopus
  140. G. Bergers, K. Javaherian, K. M. Lo, J. Folkman, and D. Hanahan, “Effects of angiogenesis inhibitors on multistage carcinogenesis in mice,” Science, vol. 284, no. 5415, pp. 808–812, 1999. View at Publisher · View at Google Scholar · View at Scopus
  141. I. B. J. K. Joseph, J. Vukanovic, and J. T. Isaacs, “Antiangiogenic treatment with linomide as chemoprevention for prostate, seminal vesicle, and breast carcinogenesis in rodents,” Cancer Research, vol. 56, no. 15, pp. 3404–3408, 1996. View at Scopus
  142. W. Bollag, “Experimental basis of cancer combination chemotherapy with retinoids, cytokines, 1,25-dihydroxyvitamin D3, and analogs,” Journal of Cellular Biochemistry, vol. 56, no. 4, pp. 427–435, 1994. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  143. D. J. Mantell, P. E. Owens, N. J. Bundred, E. B. Mawer, and A. E. Canfield, “1α,25-dihydroxyvitamin D3 inhibits angiogenesis in vitro and in vivo,” Circulation Research, vol. 87, no. 3, pp. 214–220, 2000.
  144. L. P. Marson, K. M. Kurian, W. R. Miller, and J. M. Dixon, “The effect of tamoxifen on breast tumour vascularity,” Breast Cancer Research and Treatment, vol. 66, no. 1, pp. 9–15, 2001. View at Publisher · View at Google Scholar · View at Scopus
  145. B. A. Ruggeri, C. Robinson, T. Angeles, J. Wilkinson, and M. L. Clapper, “The chemopreventive agent oltipraz possesses potent antiangiogenic activity in vitro, ex vivo, and in vivo and inhibits tumor xenograft growth,” Clinical Cancer Research, vol. 8, no. 1, pp. 267–274, 2002. View at Scopus
  146. M. W. Lingen, P. J. Polverini, and N. P. Bouck, “Inhibition of squamous cell carcinoma angiogenesis by direct interaction of retinoic acid with endothelial cells,” Laboratory Investigation, vol. 74, no. 2, pp. 476–483, 1996. View at Scopus
  147. Y. Takahashi, M. Mai, and K. Nishioka, “Alpha-difluoromethylornithine induces apoptosis as well as antiangiogenesis in the inhibition of tumor growth and metastasis in a human gastric cancer model,” International Journal of Cancer, vol. 85, no. 2, pp. 243–247, 2000.
  148. C. Jiang, W. Jiang, C. Ip, H. Ganther, and J. Lu, “Selenium-induced inhibition of angiogenesis in mammary cancer at chemopreventive levels of intake,” Molecular Carcinogenesis, vol. 26, no. 4, pp. 213–225, 1999. View at Publisher · View at Google Scholar
  149. T. Cai, G. Fassina, M. Morini et al., “N-acetylcysteine inhibits endothelial cell invasion and angiogenesis,” Laboratory Investigation, vol. 79, no. 9, pp. 1151–1159, 1999. View at Scopus
  150. S. E. Ebeler, C. A. Brenneman, G. S. Kim et al., “Dietary catechin delays tumor onset in a transgenic mouse model,” American Journal of Clinical Nutrition, vol. 76, no. 4, pp. 865–872, 2002. View at Scopus
  151. Z. Wang, C. F. Fuentes, and S. M. Shapshay, “Antiangiogenic and chemopreventive activities of celecoxib in oral carcinoma cell,” Laryngoscope, vol. 112, no. 5, pp. 839–842, 2002. View at Scopus
  152. S. Sharma, M. Ghoddoussi, P. Gao, G. J. Kelloff, V. E. Steele, and L. Kopelovich, “A quantitative angiogenesis model for efficacy testing of chemopreventive agents,” Anticancer Research, vol. 21, no. 6, pp. 3829–3837, 2001. View at Scopus
  153. E. A. Kruger, P. H. Duray, D. K. Price, J. M. Pluda, and W. D. Figg, “Approaches to preclinical screening of antiangiogenic agents,” Seminars in Oncology, vol. 28, no. 6, pp. 570–576, 2001.
  154. G. Perletti, P. Concari, R. Giardini et al., “Antitumor activity of endostatin against carcinogen-induced rat primary mammary tumors,” Cancer Research, vol. 60, no. 7, pp. 1793–1796, 2000. View at Scopus
  155. C. S. Yang and Z. Y. Wang, “Tea and cancer,” Journal of the National Cancer Institute, vol. 85, no. 13, pp. 1038–1049, 1993.
  156. Z. Y. Wang, L. D. Wang, M. J. Lee et al., “Inhibition of N-nitrosomethylbenzylamine-induced esophageal tumorigenesis in rats by green and black tea,” Carcinogenesis, vol. 16, no. 9, pp. 2143–2148, 1995. View at Scopus
  157. G. Y. Yang, Z. Y. Wang, S. Kim et al., “Characterization of early pulmonary hyperproliferation and tumor progression and their inhibition by black tea in a 4-(methylnitrosamino)-1- (3-pyridyl)-1-butanone-induced lung tumorigenesis model with A/J mice,” Cancer Research, vol. 57, no. 10, pp. 1889–1894, 1997. View at Scopus
  158. Z. Y. Wang, S. J. Cheng, Z. C. Zhou et al., “Antimutagenic activity of green tea polyphenols,” Mutation Research, vol. 223, no. 3, pp. 273–285, 1989. View at Scopus
  159. Z. Y. Wang, J. Y. Hong, M. T. Huang, K. R. Reuhl, A. H. Conney, and C. S. Yang, “Inhibition of N-nitrosodiethylamine- and 4-(methylnitrosamino)-1-(3- pyridyl)-1-butanone-induced tumorigenesis in A/J mice by green tea and black tea,” Cancer Research, vol. 52, no. 7, pp. 1943–1947, 1992. View at Scopus
  160. M. Sazuka, S. Murakami, M. Isemura, K. Satoh, and T. Nukiwa, “Inhibitory effects of green tea infusion on in vitro invasion and in vivo metastasis of mouse lung carcinoma cells,” Cancer Letters, vol. 98, no. 1, pp. 27–31, 1995. View at Publisher · View at Google Scholar · View at Scopus
  161. S. Taniguchi, H. Fujiki, H. Kobayashi et al., “Effect of (-)-epigallocatechin gallate, the main constituent of green tea, on lung metastasis with mouse B16 melanoma cell lines,” Cancer Letters, vol. 65, no. 1, pp. 51–54, 1992. View at Publisher · View at Google Scholar · View at Scopus
  162. J. Liao, G. Y. Yang, E. S. Park et al., “Inhibition of lung carcinogenesis and effects on angiogenesis and apoptosis in A/J mice by oral administration of green tea,” Nutrition and Cancer, vol. 48, no. 1, pp. 44–53, 2004. View at Scopus
  163. Y. Cao and R. Cao, “Angiogenesis inhibited by drinking tea,” Nature, vol. 398, no. 6726, p. 381, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  164. S. Garbisa, S. Biggin, N. Cavallarin, L. Sartor, R. Benelli, and A. Albini, “Tumor invasion: molecular shears blunted by green tea,” Nature Medicine, vol. 5, no. 11, p. 1216, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  165. S. Garbisa, L. Sartor, S. Biggin, B. Salvato, R. Benelli, and A. Albini, “Tumor gelatinases and invasion inhibited by the green tea flavanol epigallocatechin-3-gallate,” Cancer, vol. 91, no. 4, pp. 822–832, 2001. View at Publisher · View at Google Scholar · View at Scopus
  166. Y. P. Lu, Y. R. Lou, J. G. Xie et al., “Topical applications of caffeine or (-)-epigallocatechin gallate (EGCG) inhibit carcinogenesis and selectively increase apoptosis in UVB-induced skin tumors in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 19, pp. 12455–12460, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  167. S. Bettuzzi, M. Brausi, F. Rizzi, G. Castagnetti, G. Peracchia, and A. Corti, “Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study,” Cancer Research, vol. 66, no. 2, pp. 1234–1240, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  168. M. Shimizu, Y. Fukutomi, M. Ninomiya et al., “Green tea extracts for the prevention of metachronous colorectal adenomas: a pilot study,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 11, pp. 3020–3025, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  169. N. Li, Z. Sun, C. Han, and J. Chen, “The chemopreventive effects of tea on human oral precancerous mucosa lesions,” Proceedings of the Society for Experimental Biology and Medicine, vol. 220, no. 4, pp. 218–224, 1999. View at Scopus
  170. W. S. Ahn, J. Yoo, S. W. Huh et al., “Protective effects of green tea extracts (polyphenon E and EGCG) on human cervical lesions,” European Journal of Cancer Prevention, vol. 12, no. 5, pp. 383–390, 2003. View at Publisher · View at Google Scholar · View at Scopus
  171. V. W. Li and W. W. Li, “Antiangiogenesis in the treatment of skin cancer,” Journal of Drugs in Dermatology, vol. 6, no. 11, pp. S17–S24, 2007. View at Scopus
  172. C. A. Lamartiniere, M. S. Cotroneo, W. A. Fritz, J. Wang, R. Mentor-Marcel, and A. Elgavish, “Genistein chemoprevention: timing and mechanisms of action in murine mammary and prostate,” Journal of Nutrition, vol. 132, no. 3, pp. 552S–558S, 2002. View at Scopus
  173. M. S. Cotroneo, J. Wang, W. A. Fritz, I. E. Eltoum, and C. A. Lamartiniere, “Genistein action in the prepubertal mammary gland in a chemoprevention model,” Carcinogenesis, vol. 23, no. 9, pp. 1467–1474, 2002. View at Scopus
  174. A. I. Constantinou, D. Lantvit, M. Hawthorne, X. Xu, R. B. van Breemen, and J. M. Pezzuto, “Chemopreventive effects of soy protein and purified soy isoflavones on DMBA-induced mammary tumors in female Sprague-Dawley rats,” Nutrition and Cancer, vol. 41, no. 1-2, pp. 75–81, 2001. View at Scopus
  175. A. Brown, P. Jolly, and H. Wei, “Genistein modulates neuroblastoma cell proliferation and differentiation through induction of apoptosis and regulation of tyrosine kinase activity and N-myc expression,” Carcinogenesis, vol. 19, no. 6, pp. 991–997, 1998. View at Publisher · View at Google Scholar · View at Scopus
  176. J. N. Davis, O. Kucuk, and F. H. Sarkar, “Genistein inhibits NF-κB activation in prostate cancer cells,” Nutrition and Cancer, vol. 35, no. 2, pp. 167–174, 1999. View at Scopus
  177. R. A. Dixon and D. Ferreira, “Genistein,” Phytochemistry, vol. 60, no. 3, pp. 205–211, 2002. View at Publisher · View at Google Scholar · View at Scopus
  178. T. Fotsis, M. Pepper, H. Adlercreutz et al., “Genistein, a dietary-derived inhibitor of in vitro angiogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 7, pp. 2690–2694, 1993. View at Scopus
  179. T. Akiyama, J. Ishida, S. Nakagawa et al., “Genistein, a specific inhibitor of tyrosine-specific protein kinases,” Journal of Biological Chemistry, vol. 262, no. 12, pp. 5592–5595, 1987. View at Scopus
  180. H. Adlercreutz, H. Honjo, A. Higashi et al., “Urinary excretion of lignans and isoflavonoid phytoestrogens in Japanese men and women consuming a traditional Japanese diet,” American Journal of Clinical Nutrition, vol. 54, no. 6, pp. 1093–1100, 1991. View at Scopus
  181. T. Fotsis, M. Pepper, H. Adlercreutz, T. Hase, R. Montesano, and L. Schweigerer, “Genistein, a dietary ingested isoflavonoid, inhibits cell proliferation and in vitro angiogenesis,” Journal of Nutrition, vol. 125, no. 3, pp. 790S–797S, 1995. View at Scopus
  182. S. A. Lee, X. O. Shu, H. Li et al., “Adolescent and adult soy food intake and breast cancer risk: results from the Shanghai women's health study,” American Journal of Clinical Nutrition, vol. 89, no. 6, pp. 1920–1926, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  183. C. Muir, J Waterhouse, T. Mack, et al., Cancer Incidence in Five Continents, vol. 5, International Agency for Research on Cancer, Lyon, France, 1987.
  184. L. A. Korde, A. H. Wu, T. Fears et al., “Childhood soy intake and breast cancer risk in Asian American women,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 4, pp. 1050–1059, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  185. R. K. Severson, A. M. Y. Nomura, J. S. Grove, and G. N. Stemmermann, “A prospective study of demographics, diet, and prostate cancer among men of Japanese ancestry in Hawaii,” Cancer Research, vol. 49, no. 7, pp. 1857–1860, 1989. View at Scopus
  186. Angiogenesis Foundation Clinical Trials Database, 2011.
  187. X. O. Shu, Y. Zheng, H. Cai et al., “Soy food intake and breast cancer survival,” Journal of the American Medical Association, vol. 302, no. 22, pp. 2437–2443, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  188. M. Jang, L. Cai, G. O. Udeani et al., “Cancer chemopreventive activity of resveratrol, a natural product derived from grapes,” Science, vol. 275, no. 5297, pp. 218–220, 1997. View at Scopus
  189. Y. Kimura and H. Okuda, “Resveratrol isolated from polygonum cuspidatum root prevents tumor growth and metastasis to lung and tumor-induced neovascularization in Lewis lung carcinoma-bearing mice,” Journal of Nutrition, vol. 131, no. 6, pp. 1844–1849, 2001. View at Scopus
  190. E. Bråkenhielm, R. Cao, and Y. Cao, “Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes,” The Federation of American Societies for Experimental Biology Journal, vol. 15, no. 10, pp. 1798–1800, 2001. View at Scopus
  191. A. A. E. Bertelli, R. Baccalini, E. Battaglia, M. Falchi, and M. E. Ferrero, “Resveratrol inhibits TNFα-induced endothelial cell activation,” Therapie, vol. 56, no. 5, pp. 613–616, 2001. View at Scopus
  192. K. Igura, T. Ohta, Y. Kuroda, and K. Kaji, “Resveratrol and quercetin inhibit angiogenesis in vitro,” Cancer Letters, vol. 171, no. 1, pp. 11–16, 2001. View at Publisher · View at Google Scholar · View at Scopus
  193. S. Banerjee, C. Bueso-Ramos, and B. B. Aggarwal, “Suppression of 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor-κB, cyclooxygenase 2, and matrix metalloprotease 9,” Cancer Research, vol. 62, no. 17, pp. 4945–4954, 2002. View at Scopus
  194. C. Chao, J. M. Slezak, B. J. Caan, and V. P. Quinn, “Alcoholic beverage intake and risk of lung cancer: the California men's health study,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 10, pp. 2692–2699, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  195. A. Ruano-Ravina, A. Figueiras, and J. M. Barros-Dios, “Type of wine and risk of lung cancer: a case-control study in Spain,” Thorax, vol. 59, no. 11, pp. 981–985, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  196. S. Sutcliffe, E. Giovannucci, M. F. Leitzmann et al., “A prospective cohort study of red wine consumption and risk of prostate cancer,” International Journal of Cancer, vol. 120, no. 7, pp. 1529–1535, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  197. W. B. Wu, H. S. Chiang, J. Y. Fang, and C. F. Hung, “Inhibitory effect of lycopene on POGF-BB-induced signalling and migration in human dermal fibroblasts: a possible target for cancer,” Biochemical Society Transactions, vol. 35, part 5, pp. 1377–1378, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  198. C. S. Huang, J. W. Liao, and M. L. Hu, “Lycopene inhibits experimental metastasis of human hepatoma SK-Hep-1 cells in athymic nude mice,” Journal of Nutrition, vol. 138, no. 3, pp. 538–543, 2008. View at Scopus
  199. E. Giovannucci, E. B. Rimm, Y. Liu, M. J. Stampfer, and W. C. Willett, “A prospective study of tomato products, lycopene, and prostate cancer risk,” Journal of the National Cancer Institute, vol. 94, no. 5, pp. 391–398, 2002. View at Scopus
  200. E. M. Grainger, S. J. Schwartz, S. Wang et al., “A combination of tomato and soy products for men with recurring prostate cancer and rising prostate specific antigen,” Nutrition and Cancer, vol. 60, no. 2, pp. 145–154, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  201. L. Chen, M. Stacewicz-Sapuntzakis, C. Duncan et al., “Oxidative DNA damage in prostate cancer patients consuming tomato sauce-based entrees as a whole-food intervention,” Journal of the National Cancer Institute, vol. 93, no. 24, pp. 1872–1879, 2001. View at Scopus
  202. M. Szymczak, M. Murray, and N. Petrovic, “Modulation of angiogenesis by ω-3 polyunsaturated fatty acids is mediated by cyclooxygenases,” Blood, vol. 111, no. 7, pp. 3514–3521, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  203. W. Friedrichs, S. B. Ruparel, R. A. Marciniak, et al., “Omega-3 fatty acid inhibition of prostate cancer progression to hormone independence is associated with suppression of mTOR signaling and androgen receptor expression,” Nutrition and Cancer, vol. 10, pp. 1–7, 2011.
  204. C. C. Mandal, T. Ghosh-Choudhury, T. Yoneda, G. G. Choudhury, and N. Ghosh-Choudhury, “Fish oil prevents breast cancer cell metastasis to bone,” Biochemical and Biophysical Research Communications, vol. 402, no. 4, pp. 602–607, 2010. View at Publisher · View at Google Scholar · View at PubMed
  205. Z. Gong, E. A. Holly, F. Wang, J. M. Chan, and P. M. Bracci, “Intake of fatty acids and antioxidants and pancreatic cancer in a large population-based case-control study in the San Francisco Bay area,” International Journal of Cancer, vol. 127, no. 8, pp. 1893–1904, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  206. K. M. Szymanski, D. C. Wheeler, and L. A. Mucci, “Fish consumption and prostate cancer risk: a review and meta-analysis,” The American Journal of Clinical Nutrition, vol. 92, no. 5, pp. 1223–1233, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  207. H. Yao, H. Wang, Z. Zhang, B. H. Jiang, J. Luo, and X. Shi, “Sulforaphane inhibited expression of hypoxia-inducible factor-1α in human tongue squamous cancer cells and prostate cancer cells,” International Journal of Cancer, vol. 123, no. 6, pp. 1255–1261, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  208. R. Davis, K. P. Singh, R. Kurzrock, and S. Shankar, “Sulforaphane inhibits angiogenesis through activation of FOXO transcription factors,” Oncology Reports, vol. 22, no. 6, pp. 1473–1478, 2009. View at Publisher · View at Google Scholar · View at Scopus
  209. M. Asakage, N. H. Tsuno, J. Kitayama et al., “Sulforaphane induces inhibition of human umbilical vein endothelial cells proliferation by apoptosis,” Angiogenesis, vol. 9, no. 2, pp. 83–91, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  210. H. T. Wu, S. H. Lin, and Y. H. Chen, “Inhibition of cell proliferation and in vitro markers of angiogenesis by indole-3-carbinol, a major indole metabolite present in cruciferous vegetables,” Journal of Agricultural and Food Chemistry, vol. 53, no. 13, pp. 5164–5169, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  211. K. Kunimasa, T. Kobayashi, S. Sugiyama, K. Kaji, and T. Ohta, “Indole-3-carbinol suppresses tumor-induced angiogenesis by inhibiting tube formation and inducing apoptosis,” Bioscience, Biotechnology and Biochemistry, vol. 72, no. 8, pp. 2243–2246, 2008. View at Publisher · View at Google Scholar
  212. F. L. Büchner, H. B. Bueno-de-Mesquita, J. Linseisen et al., “Fruits and vegetables consumption and the risk of histological subtypes of lung cancer in the European prospective investigation into cancer and nutrition (EPIC),” Cancer Causes and Control, vol. 21, no. 3, pp. 357–371, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  213. H. Boeing, T. Dietrich, K. Hoffmann et al., “Intake of fruits and vegetables and risk of cancer of the upper aero-digestive tract: the prospective EPIC-study,” Cancer Causes and Control, vol. 17, no. 7, pp. 957–969, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  214. C. A. Thompson, T. M. Habermann, A. H. Wang et al., “Antioxidant intake from fruits, vegetables and other sources and risk of non-Hodgkin's lymphoma: the Iowa women's health study,” International Journal of Cancer, vol. 126, no. 4, pp. 992–1003, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  215. M. A. Gates, S. S. Tworoger, J. L. Hecht, I. de Vivo, B. Rosner, and S. E. Hankinson, “A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer,” International Journal of Cancer, vol. 121, no. 10, pp. 2225–2232, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  216. E. Ansó, A. Zuazo, M. Irigoyen, M. C. Urdaci, A. Rouzaut, and J. J. Martínez-Irujo, “Flavonoids inhibit hypoxia-induced vascular endothelial growth factor expression by a HIF-1 independent mechanism,” Biochemical Pharmacology, vol. 79, no. 11, pp. 1600–1609, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  217. M. Pilátová, V. Stupáková, L. Varinská et al., “Effect of selected flavones on cancer and endothelial cells,” General Physiology and Biophysics, vol. 29, no. 2, pp. 134–143, 2010. View at Publisher · View at Google Scholar
  218. S. J. Oh, O. Kim, J. S. Lee et al., “Inhibition of angiogenesis by quercetin in tamoxifen-resistant breast cancer cells,” Food and Chemical Toxicology, vol. 48, no. 11, pp. 3227–3234, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  219. C. D. Davis, N. J. Emenaker, and J. A. Milner, “Cellular proliferation, apoptosis and angiogenesis: molecular targets for nutritional preemption of cancer,” Seminars in Oncology, vol. 37, no. 3, pp. 243–257, 2010. View at Publisher · View at Google Scholar · View at PubMed
  220. J. D. Kim, L. Liu, W. Guo, et al., “Chemical structure of flavanols in relation to modulation of angiogenesis and immune-endothelial cell adhesion,” Journal of Nutritional Biochemistry, vol. 17, no. 3, pp. 165–176, 2006.
  221. http://www.nal.usda.gov/fnic/foodcomp/Data/Other/EB03_VegFlav.pdf.
  222. D. Heimler, L. Isolani, P. Vignolini, S. Tombelli, and A. Romani, “Polyphenol content and antioxidative activity in some species of freshly consumed salads,” Journal of Agricultural and Food Chemistry, vol. 55, no. 5, pp. 1724–1729, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  223. K. A. Steinmetz, J. D. Potter, and A. R. Folsom, “Vegetables, fruit, and lung cancer in the Iowa women's health study,” Cancer Research, vol. 53, no. 3, pp. 536–543, 1993. View at Scopus
  224. C. Galeone, C. Pelucchi, F. Levi et al., “Onion and garlic use and human cancer,” American Journal of Clinical Nutrition, vol. 84, no. 5, pp. 1027–1032, 2006. View at Scopus
  225. E. Dorant, P. A. V. D. Brandt, R. A. Goldbohm, and F. Sturmans, “Consumption of onions and a reduced risk of stomach carcinoma,” Gastroenterology, vol. 110, no. 1, pp. 12–20, 1996. View at Publisher · View at Google Scholar · View at Scopus
  226. M. Schulz, P. H. Lahmann, H. Boeing et al., “Fruit and vegetable consumption and risk of epithelial ovarian cancer: the European Prospective Investigation into Cancer and Nutrition,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 11, part 1, pp. 2531–2535, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  227. L. S. Wang, S. S. Hecht, S. G. Carmella et al., “Anthocyanins in black raspberries prevent esophageal tumors in rats,” Cancer Prevention Research, vol. 2, no. 1, pp. 84–93, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  228. G. D. Stoner, T. Chen, L. A. Kresty, R. M. Aziz, T. Reinemann, and R. Nines, “Protection against esophageal cancer in rodents with lyophilized berries: potential mechanisms,” Nutrition and Cancer, vol. 54, no. 1, pp. 33–46, 2006. View at Publisher · View at Google Scholar · View at Scopus
  229. L. S. Wang, A. A. Dombkowski, C. Seguin et al., “Mechanistic basis for the chemopreventive effects of black raspberries at a late stage of rat esophageal carcinogenesis,” Molecular Carcinogenesis, vol. 50, no. 4, pp. 291–300, 2011. View at Publisher · View at Google Scholar · View at PubMed
  230. H. Lu, J. Li, D. Zhang, G. D. Stoner, and C. Huang, “Molecular mechanisms involved in chemoprevention of black raspberry extracts: from transcription factors to their target genes,” Nutrition and Cancer, vol. 54, no. 1, pp. 69–78, 2006. View at Publisher · View at Google Scholar · View at Scopus
  231. B. S. Shumway, L. A. Kresty, P. E. Larsen et al., “Effects of a topically applied bioadhesive berry gel on loss of heterozygosity indices in premalignant oral lesions,” Clinical Cancer Research, vol. 14, no. 8, pp. 2421–2430, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  232. L. Gu, M. A. Kelm, J. F. Hammerstone et al., “Concentrations of proanthocyanidins in common foods and estimations of normal consumption,” Journal of Nutrition, vol. 134, no. 3, pp. 613–617, 2004. View at Scopus
  233. R. A. Dixon, D. Y. Xie, and S. B. Sharma, “Proanthocyanidins—a final frontier in flavonoid research?” New Phytologist, vol. 165, no. 1, pp. 9–28, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  234. D. Y. Xie and R. A. Dixon, “Proanthocyanidin biosynthesis—still more questions than answers?” Phytochemistry, vol. 66, no. 18, pp. 2127–2144, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  235. L. Gu, S. E. House, X. Wu, B. Ou, and R. L. Prior, “Procyanidin and catechin contents and antioxidant capacity of cocoa and chocolate products,” Journal of Agricultural and Food Chemistry, vol. 54, no. 11, pp. 4057–4061, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  236. N. Camu, T. de Winter, S. K. Addo, J. S. Takrama, H. Bernaert, and L. de Vuyst, “Fermentation of cocoa beans: influence of microbial activities and polyphenol concentrations on the flavour of chocolate,” Journal of the Science of Food and Agriculture, vol. 88, no. 13, pp. 2288–2297, 2008. View at Publisher · View at Google Scholar · View at Scopus
  237. T. P. Kenny, C. L. Keen, P. Jones, H. J. Kung, H. H. Schmitz, and M. E. Gershwin, “Cocoa procyanidins inhibit proliferation and angiogenic signals in human dermal microvascular endothelial cells following stimulation by low-level H2O2,” Experimental Biology and Medicine, vol. 229, no. 8, pp. 765–771, 2004. View at Scopus
  238. J. E. Kim, J. E. Son, S. K. Jung et al., “Cocoa polyphenols suppress TNF-α-induced vascular endothelial growth factor expression by inhibiting phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase kinase-1 (MEK1) activities in mouse epidermal cells,” British Journal of Nutrition, vol. 104, no. 7, pp. 957–964, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  239. L. Y. Rios, R. N. Bennett, S. A. Lazarus, C. Rémésy, A. Scalbert, and G. Williamson, “Cocoa procyanidins are stable during gastric transit in humans,” American Journal of Clinical Nutrition, vol. 76, no. 5, pp. 1106–1110, 2002. View at Scopus
  240. I. A. L. Persson, K. Persson, S. Hägg, and R. G. G. Andersson, “Effects of cocoa extract and dark chocolate on angiotensin-converting enzyme and nitric oxide in human endothelial cells and healthy volunteers—a nutrigenomics perspective,” Journal of Cardiovascular Pharmacology, vol. 57, no. 1, pp. 44–50, 2011. View at Publisher · View at Google Scholar · View at PubMed
  241. R. di Giuseppe, A. Di Castelnuovo, F. Centritto et al., “Regular consumption of dark chocolate is associated with low serum concentrations of C-reactive protein in a healthy italian population,” Journal of Nutrition, vol. 138, no. 10, pp. 1939–1945, 2008. View at Scopus
  242. N. K. Hollenberg, N. D. L. Fisher, and M. L. McCullough, “Flavanols, the Kuna, cocoa consumption, and nitric oxide,” Journal of the American Society of Hypertension, vol. 3, no. 2, pp. 105–112, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  243. H. Schroeter, C. Heiss, J. Balzer et al., “(-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 4, pp. 1024–1029, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  244. J. Lu, K. Zhang, S. Nam, R. A. Anderson, R. Jove, and W. Wen, “Novel angiogenesis inhibitory activity in cinnamon extract blocks VEGFR2 kinase and downstream signaling,” Carcinogenesis, vol. 31, no. 3, pp. 481–488, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  245. H. K. Kwon, W. K. Jeon, J. S. Hwang et al., “Cinnamon extract suppresses tumor progression by modulating angiogenesis and the effector function of CD8+ T cells,” Cancer Letters, vol. 278, no. 2, pp. 174–182, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  246. X. Wu, L. Gu, R. L. Prior, and S. McKay, “Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity,” Journal of Agricultural and Food Chemistry, vol. 52, no. 26, pp. 7846–7856, 2004. View at Scopus
  247. S. Roy, S. Khanna, H. M. Alessio et al., “Anti-angiogenic property of edible berries,” Free Radical Research, vol. 36, no. 9, pp. 1023–1031, 2002. View at Publisher · View at Google Scholar · View at Scopus
  248. A. Bishayee, T. Mbimba, R. J. Thoppil et al., “Anthocyanin-rich black currant (Ribes nigrum L.) extract affords chemoprevention against diethylnitrosamine-induced hepatocellular carcinogenesis in rats,” Journal of Nutritional Biochemistry. In press. View at Publisher · View at Google Scholar · View at PubMed
  249. E. Pappas and K. M. Schaich, “Phytochemicals of cranberries and cranberry products: characterization, potential health effects, and processing stability,” Critical Reviews in Food Science and Nutrition, vol. 49, no. 9, pp. 741–781, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  250. B. A. Déziel, K. Pate, C. Neto, K. Gottschall-Pass, and R. A. R. Hurta, “Proanthocyanidins from the American Cranberry (Vaccinium macrocarpon) inhibit matrix metalloproteinase-2 and matrix metalloproteinase-9 activity in human prostate cancer cells via alterations in multiple cellular signalling pathways,” Journal of Cellular Biochemistry, vol. 111, no. 3, pp. 742–754, 2010. View at Publisher · View at Google Scholar · View at PubMed
  251. J. Boateng, M. Verghese, L. Shackelford et al., “Selected fruits reduce azoxymethane (AOM)-induced aberrant crypt foci (ACF) in Fisher 344 male rats,” Food and Chemical Toxicology, vol. 45, no. 5, pp. 725–732, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  252. H. Zessner, L. Pan, F. Will et al., “Fractionation of polyphenol-enriched apple juice extracts to identify constituents with cancer chemopreventive potential,” Molecular Nutrition and Food Research, vol. 52, no. 1, pp. S28–S44, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  253. D. Feskanich, R. G. Ziegler, D. S. Michaud et al., “Prospective study of fruit and vegetable consumption and risk of lung cancer among men and women,” Journal of the National Cancer Institute, vol. 92, no. 22, pp. 1812–1823, 2000. View at Scopus
  254. P. Knekt, J. Kumpulainen, R. Järvinen et al., “Flavonoid intake and risk of chronic diseases,” American Journal of Clinical Nutrition, vol. 76, no. 3, pp. 560–568, 2002. View at Scopus
  255. L. Le Marchand, S. P. Murphy, J. H. Hankin, L. R. Wilkens, and L. N. Kolonel, “Intake of flavonoids and lung cancer,” Journal of the National Cancer Institute, vol. 92, no. 2, pp. 154–160, 2000. View at Scopus
  256. S. Gallus, R. Talamini, A. Giacosa et al., “Does an apple a day keep the oncologist away?” Annals of Oncology, vol. 16, no. 11, pp. 1841–1844, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  257. E. Bakkalbaşi, O. Menteş, and N. Artik, “Food ellagitannins-occurrence, effects of processing and storage,” Critical Reviews in Food Science and Nutrition, vol. 49, no. 3, pp. 283–298, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  258. A. Gonzalez-Sarrias, J. C. Espin, F. A. Tomas-Barberan, et al., “Comparative transcriptional analysis reveals key cell cycle and MAPK signaling genes involved in the S-G2M-phase arrest of Caco-2 cells exposed to ellagic acid and its colonic derivatives, urolithins,” Molecular Nutrition & Food Research, vol. 53, pp. 686–698, 2009.
  259. R. Tzulker, I. Glazer, I. Bar-Ilan, D. Holland, M. Aviram, and R. Amir, “Antioxidant activity, polyphenol content, and related compounds in different fruit juices and homogenates prepared from 29 different pomegranate accessions,” Journal of Agricultural and Food Chemistry, vol. 55, no. 23, pp. 9559–9570, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  260. N. P. Seeram, L. S. Adams, S. M. Henning et al., “In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice,” Journal of Nutritional Biochemistry, vol. 16, no. 6, pp. 360–367, 2005. View at Publisher · View at Google Scholar · View at PubMed
  261. M. R. Sartippour, N. P. Seeram, J. Y. Rao et al., “Ellagitannin-rich pomegranate extract inhibits angiogenesis in prostate cancer in vitro and in vivo,” International Journal of Oncology, vol. 32, no. 2, pp. 475–480, 2008. View at Scopus
  262. A. J. Pantuck, J. T. Leppert, N. Zomorodian et al., “Phase II study of pomegranate juice for men with rising prostate-specific antigen following surgery or radiation for prostate cancer,” Clinical Cancer Research, vol. 12, no. 13, pp. 4018–4026, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  263. H. Yoshiji, S. Kuriyama, R. Noguchi et al., “Amelioration of carcinogenesis and tumor growth in the rat liver by combination of vitamin K2 and angiotensin-converting enzyme inhibitor via anti-angiogenic activities,” Oncology Reports, vol. 15, no. 1, pp. 155–159, 2006. View at Scopus
  264. K. Nimptsch, S. Rohrmann, R. Kaaks, and J. Linseisen, “Dietary vitamin K intake in relation to cancer incidence and mortality: results from the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Heidelberg),” American Journal of Clinical Nutrition, vol. 91, no. 5, pp. 1348–1358, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  265. D. Habu, S. Shiomi, A. Tamori et al., “Role of vitamin K2 in the development of hepatocellular carcinoma in women with viral cirrhosis of the liver,” Journal of the American Medical Association, vol. 292, no. 3, pp. 358–361, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  266. S. Perkins, R. D. Verschoyle, K. Hill et al., “Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis,” Cancer Epidemiology Biomarkers and Prevention, vol. 11, no. 6, pp. 535–540, 2002. View at Scopus
  267. A. Goel, C. R. Boland, and D. P. Chauhan, “Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells,” Cancer Letters, vol. 172, no. 2, pp. 111–118, 2001. View at Publisher · View at Google Scholar · View at Scopus
  268. T. Dorai, Y. C. Cao, B. Dorai, R. Buttyan, and A. E. Katz, “Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LNCaP prostate cancer cells in vivo,” Prostate, vol. 47, no. 4, pp. 293–303, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  269. A. E. Gururaj, M. Belakavadi, D. A. Venkatesh, D. Marmé, and B. P. Salimath, “Molecular mechanisms of anti-angiogenic effect of curcumin,” Biochemical and Biophysical Research Communications, vol. 297, no. 4, pp. 934–942, 2002. View at Publisher · View at Google Scholar
  270. Z. M. Shao, Z. Z. Shen, C. H. Liu et al., “Curcumin exerts multiple suppressive effects on human breast carcinoma cells,” International Journal of Cancer, vol. 98, no. 2, pp. 234–240, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  271. R. Mohan, J. Sivak, P. Ashton et al., “Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2, including expression of matrix metalloproteinase gelatinase B,” Journal of Biological Chemistry, vol. 275, no. 14, pp. 10405–10412, 2000. View at Publisher · View at Google Scholar · View at Scopus
  272. E. Y. Shin, S. Y. Kim, and E. G. Kim, “C-jun N-terminal kinase is involved in motility of endothelial cell,” Experimental and Molecular Medicine, vol. 33, no. 4, pp. 276–283, 2001. View at Scopus
  273. D. Thaloor, A. K. Singh, G. S. Sidhu, P. V. Prasad, H. K. Kleinman, and R. K. Maheshwari, “Inhibition of angiogenic differentiation of human umbilical vein endothelial cells by curcumin,” Cell Growth and Differentiation, vol. 9, no. 4, pp. 305–312, 1998. View at Scopus
  274. A. L. Chen, C. H. Hsu, J. K. Lin et al., “Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions,” Anticancer Research, vol. 21, no. 4, pp. 2895–2900, 2001. View at Scopus
  275. R. E. Carroll, R. V. Benya, D. K. Turgeon et al., “Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia,” Cancer Prevention Research, vol. 4, no. 3, pp. 354–364, 2011. View at Publisher · View at Google Scholar · View at PubMed
  276. R. M. Arensman and C. J. H. Stolar, “Vitamin A effect on tumor angiogenesis,” Journal of Pediatric Surgery, vol. 14, no. 6, pp. 809–813, 1979. View at Scopus
  277. E. D. E. Liaudet-Coopman, G. J. Berchem, and A. Wellstein, “In vivo inhibition of angiogenesis and induction of apoptosis by retinoic acid in squamous cell carcinoma,” Clinical Cancer Research, vol. 3, no. 2, pp. 179–184, 1997. View at Scopus
  278. I. Sogno, R. Venè, N. Ferrari et al., “Angioprevention with fenretinide: targeting angiogenesis in prevention and therapeutic strategies,” Critical Reviews in Oncology/Hematology, vol. 75, no. 1, pp. 2–14, 2010. View at Publisher · View at Google Scholar · View at PubMed
  279. C. Marquez, S. M. Bair, E. Smithberger, B. S. Cherpelis, and L. F. Glass, “Systemic retinoids for chemoprevention of non-melanoma skin cancer in high-risk patients,” Journal of Drugs in Dermatology, vol. 9, no. 7, pp. 753–758, 2010. View at Scopus
  280. S. Hoffmann, A. Rockenstein, A. Ramaswamy et al., “Retinoic acid inhibits angiogenesis and tumor growth of thyroid cancer cells,” Molecular and Cellular Endocrinology, vol. 264, no. 1-2, pp. 74–81, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  281. M. S. Irwig, A. El-Sohemy, A. Baylin, N. Rifai, and H. Campos, “Frequent intake of tropical fruits that are rich in β-cryptoxanthin is associated with higher plasma β-cryptoxanthin concentrations in Costa Rican adolescents,” Journal of Nutrition, vol. 132, no. 10, pp. 3161–3167, 2002. View at Scopus
  282. E. M. Siegel, J. L. Salemi, L. L. Villa, A. Ferenczy, E. L. Franco, and A. R. Giuliano, “Dietary consumption of antioxidant nutrients and risk of incident cervical intraepithelial neoplasia,” Gynecologic Oncology, vol. 118, no. 3, pp. 289–294, 2010. View at Publisher · View at Google Scholar · View at PubMed
  283. M. Pandey and V. K. Shukla, “Diet and gallbladder cancer: a case-control study,” European Journal of Cancer Prevention, vol. 11, no. 4, pp. 365–368, 2002. View at Publisher · View at Google Scholar · View at Scopus
  284. J. M. Yuan, D. O. Stram, K. Arakawa, H. P. Lee, and M. C. Yu, “Dietary cryptoxanthin and reduced risk of lung cancer: the Singapore Chinese health study,” Cancer Epidemiology Biomarkers and Prevention, vol. 12, no. 9, pp. 890–898, 2003. View at Scopus
  285. R. M. Tamimi, G. A. Colditz, and S. E. Hankinson, “Circulating carotenoids, mammographic density, and subsequent risk of breast cancer,” Cancer Research, vol. 69, no. 24, pp. 9323–9329, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  286. R. G. Mehta, J. Liu, A. Constantinou et al., “Cancer chemopreventive activity of brassinin, a phytoalexin from cabbage,” Carcinogenesis, vol. 16, no. 2, pp. 399–404, 1995. View at Scopus
  287. A. Garg, S. Garg, L. J. D. Zaneveld, and A. K. Singla, “Chemistry and pharmacology of the citrus bioflavonoid hesperidin,” Phytotherapy Research, vol. 15, no. 8, pp. 655–669, 2001. View at Publisher · View at Google Scholar · View at PubMed
  288. F. V. So, N. Guthrie, A. F. Chambers, M. Moussa, and K. K. Carroll, “Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices,” Nutrition and Cancer, vol. 26, no. 2, pp. 167–181, 1996. View at Scopus
  289. K. Akagi, M. Hirose, T. Hoshiya, Y. Mizoguchi, N. Ito, and T. Shirai, “Modulating effects of ellagic acid, vanillin and quercetin in a rat medium term multi-organ carcinogenesis model,” Cancer Letters, vol. 94, no. 1, pp. 113–121, 1995. View at Scopus
  290. H. Kohno, T. Tanaka, K. Kawabata et al., “Silymarin, a naturally occurring polyphenolic antioxidant flavonoid, inhibits azoxymethane-induced colon carcinogenesis in male F344 rats,” International Journal of Cancer, vol. 101, no. 5, pp. 461–468, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  291. K. B. Kwon, S. J. Yoo, D. G. Ryu et al., “Induction of apoptosis by diallyl disulfide through activation of caspase-3 in human leukemia HL-60 cells,” Biochemical Pharmacology, vol. 63, no. 1, pp. 41–47, 2002. View at Publisher · View at Google Scholar
  292. J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008,” International Journal of Cancer, vol. 127, no. 12, pp. 2893–2917, 2010. View at Publisher · View at Google Scholar · View at Scopus
  293. P. Boyle and B. E. Levin, Eds., World Cancer Report 2008, WHO Press, Geneva, Switzerland, 2008, http://www.iarc.fr/en/publications/pdfs-online/wcr/2008/wcr_2008.pdf.
  294. M. L. McCullough and E. L. Giovannucci, “Diet and cancer prevention,” Oncogene, vol. 23, no. 38, pp. 6349–6364, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  295. S. R. Doll, “The lessons of life: keynote address to the nutrition and cancer conference,” Cancer Research, vol. 52, no. 7, pp. 2024S–2029S, 1992. View at Scopus
  296. E. M. Grainger, S. J. Schwartz, S. Wang et al., “A combination of tomato and soy products for men with recurring prostate cancer and rising prostate specific antigen,” Nutrition and Cancer, vol. 60, no. 2, pp. 145–154, 2008. View at Publisher · View at Google Scholar · View at PubMed
  297. United States Department of Agriculture, “USDA's MyPlate,” http://www.choosemyplate.gov/.