About this Journal Submit a Manuscript Table of Contents
Journal of Oncology
Volume 2012 (2012), Article ID 934918, 7 pages
http://dx.doi.org/10.1155/2012/934918
Research Article

Vascular Disrupting Agent Arsenic Trioxide Enhances Thermoradiotherapy of Solid Tumors

1Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot No. 824, Little Rock, AR 72205, USA
2Department of Mechanical Engineering and Therapeutic Radiology, University of Minnesota, 240 Delaware Street, SE Slot No. 494, Minneapolis, MN 55455, USA

Received 3 June 2011; Revised 23 August 2011; Accepted 6 September 2011

Academic Editor: Sundaram Ramakrishnan

Copyright © 2012 Robert J. Griffin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Fang, S. J. Chen, J. H. Tong, Z. G. Wang, G. Q. Chen, and Z. Chen, “Treatment of acute promyelocytic leukemia with ATRA and As2O3: a model of molecular target-based cancer therapy,” Cancer Biology & Therapy, vol. 1, no. 6, pp. 614–620, 2002. View at Scopus
  2. X. Cai, Y. Yu, Y. Huang et al., “Arsenic trioxide-induced mitotic arrest and apoptosis in acute promyelocytic leukemia cells,” Leukemia, vol. 17, no. 7, pp. 1333–1337, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. A. M. Evens, M. S. Tallman, and R. B. Gartenhaus, “The potential of arsenic trioxide in the treatment of malignant disease: past, present, and future,” Leukemia Research, vol. 28, no. 9, pp. 891–900, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. W. H. Miller Jr., H. M. Schipper, J. S. Lee, J. Singer, and S. Waxman, “Mechanisms of action of arsenic trioxide,” Cancer Research, vol. 62, no. 14, pp. 3893–3903, 2002. View at Scopus
  5. W. H. Miller Jr., “Molecular targets of arsenic trioxide in malignant cells,” Oncologist, vol. 7, supplement 1, pp. 14–19, 2002. View at Scopus
  6. S. L. Soignet, P. Maslak, Z. G. Wang et al., “Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide,” The New England Journal of Medicine, vol. 339, no. 19, pp. 1341–1348, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. S. Lew, S. L. Brown, R. J. Griffin, C. W. Song, and J. H. Kim, “Arsenic trioxide causes selective necrosis in solid murine tumors by vascular shutdown,” Cancer Research, vol. 59, no. 24, pp. 6033–6037, 1999. View at Scopus
  8. R. J. Griffin, S. H. Lee, K. L. Rood et al., “Use of arsenic trioxide as an antivascular and thermosensitizing agent in solid tumors,” Neoplasia, vol. 2, no. 6, pp. 555–560, 2000. View at Scopus
  9. R. J. Griffin, H. Monzen, B. W. Williams, H. Park, S. H. Lee, and C. W. Song, “Arsenic trioxide induces selective tumour vascular damage via oxidative stress and increases thermosensitivity of tumours,” International Journal of Hyperthermia, vol. 19, no. 6, pp. 575–589, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. R. J. Griffin, B. W. Williams, H. J. Park, and C. W. Song, “Preferential action of arsenic trioxide in solid-tumor microenvironment enhances radiation therapy,” International Journal of Radiation Oncology Biology Physics, vol. 61, no. 5, pp. 1516–1522, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. J. H. Kim, Y. S. Lew, A. Kolozsvary, S. Ryu, and S. L. Brown, “Arsenic trioxide enhances radiation response of 9L glioma in the rat brain,” Radiation Research, vol. 160, no. 6, pp. 662–666, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. S. Lew, A. Kolozsvary, S. L. Brown, and J. H. Kim, “Synergistic interaction with arsenic trioxide and fractionated radiation in locally advanced murine tumor,” Cancer Research, vol. 62, no. 15, pp. 4202–4205, 2002. View at Scopus
  13. R. W. Ahn, F. Chen, H. Chen et al., “A novel nanoparticulate formulation of arsenic trioxide with enhanced therapeutic efficacy in a murine model of breast cancer,” Clinical Cancer Research, vol. 16, no. 14, pp. 3607–3617, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Chen, R. Ahn, J. van den Bossche, D. H. Thompson, and T. V. O'Halloran, “Folate-mediated intracellular drug delivery increases the anticancer efficacy of nanoparticulate formulation of arsenic trioxide,” Molecular Cancer Therapeutics, vol. 8, no. 7, pp. 1955–1963, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Monzen, R. J. Griffin, B. W. Williams, M. Amano, S. Ando, and T. Hasegawa, “Study of arsenic trioxide-induced vascular shutdown and enhancement with radiation in solid tumor,” Radiation Medicine, vol. 22, no. 4, pp. 205–211, 2004. View at Scopus
  16. A. M. Westermann, E. L. Jones, B. C. Schem et al., “First results of triple-modality treatment combining radiotherapy, chemotherapy, and hyperthermia for the treatment of patients with stage IIB, III, and IVA cervical carcinoma,” Cancer, vol. 104, no. 4, pp. 763–770, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. J. W. J. Bergs, N. A. P. Franken, J. Haveman, E. D. Geijsen, J. Crezee, and C. van Bree, “Hyperthermia, cisplatin and radiation trimodality treatment: a promising cancer treatment? A review from preclinical studies to clinical application,” International Journal of Hyperthermia, vol. 23, no. 4, pp. 329–341, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. N. E. Hoffmann and J. C. Bischof, “Cryosurgery of normal and tumor tissue in the dorsal skin flap chamber: part I—thermal response,” Journal of Biomechanical Engineering, vol. 123, no. 4, pp. 301–309, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. V. S. Kalambur, H. Mahaseth, J. C. Bischof, et al., “Microvascular blood flow and stasis in transgenic sickle mice: utility of a dorsal skin fold chamber for intravital microscopy,” American Journal of Hematology, vol. 77, no. 2, pp. 117–125, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Bhowmick, N. E. Hoffmann, and J. C. Bischof, “Thermal therapy of prostate tumor tissue in the dorsal skin flap chamber,” Microvascular Research, vol. 64, no. 1, pp. 170–173, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. R. J. Griffin, B. W. Williams, J. C. Bischof, M. Olin, G. L. Johnson, and B. W. Lee, “Use of a fluorescently labeled poly-caspase inhibitor for in vivo detection of apoptosis related to vascular-targeting agent arsenic trioxide for cancer therapy,” Technology in Cancer Research and Treatment, vol. 6, no. 6, pp. 651–654, 2007. View at Scopus
  22. J. Bernier, J. Denekamp, A. Rojas et al., “ARCON: accelerated radiotherapy with carbogen and nicotinamide in non small cell lung cancer: a phase I/II study by the EORTC,” Radiotherapy and Oncology, vol. 52, no. 2, pp. 149–156, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. W. C. Dewey, “Interaction of heat with radiation and chemotherapy,” Cancer Research, vol. 44, no. 10, pp. 4714s–4720s, 1984. View at Scopus
  24. M. R. Horsman, D. J. Chaplin, and J. Overgaard, “Combination of nicotinamide and hyperthermia to eliminate radioresistant chronically and acutely hypoxic tumor cells,” Cancer Research, vol. 50, no. 23, pp. 7430–7436, 1990. View at Scopus
  25. M. Bischof, A. Abdollahi, P. Gong et al., “Triple combination of irradiation, chemotherapy (pemetrexed), and VEGFR inhibition (SU5416) in human endothelial and tumor cells,” International Journal of Radiation Oncology Biology Physics, vol. 60, no. 4, pp. 1220–1232, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. T. S. Herman and B. A. Teicher, “Sequencing of trimodality therapy [cis-diamminedichloroplatinum(II)/hyperthermia/radiation] as determined by tumor growth delay and tumor cell survival in the FSaIIC fibrosarcoma,” Cancer Research, vol. 48, no. 10, pp. 2693–2697, 1988. View at Scopus
  27. T. S. Herman, B. A. Teicher, and C. N. Coleman, “Interaction of SR-4233 with hyperthermia and radiation in the FSaIIC murine fibrosarcoma tumor system in vitro and in vivo,” Cancer Research, vol. 50, no. 16, pp. 5055–5059, 1990. View at Scopus
  28. M. R. Horsman and R. Murata, “Combination of vascular targeting agents with thermal or radiation therapy,” International Journal of Radiation Oncology Biology Physics, vol. 54, no. 5, pp. 1518–1523, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. M. R. Horsman, R. Murata, and J. Overgaard, “Improving local tumor control by combining vascular targeting drugs, mild hyperthermia and radiation,” Acta Oncologica, vol. 40, no. 4, pp. 497–503, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Murata and M. R. Horsman, “Tumour-specific enhancement of thermoradiotherapy at mild temperatures by the vascular targeting agent 5,6-dimethylxanthenone-4-acetic acid,” International Journal of Hyperthermia, vol. 20, no. 4, pp. 393–404, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. T. S. Herman, M. S. Jochelson, B. A. Teicher et al., “A phase I-II trial of cisplatin, hyperthermia and radiation in patients with locally advanced malignancies,” International Journal of Radiation Oncology Biology Physics, vol. 17, no. 6, pp. 1273–1279, 1989. View at Scopus
  32. T. S. Herman, B. A. Teicher, and S. A. Holden, “Trimodality therapy (drug/hyperthermia/radiation) with BCNU or mitomycin C,” International Journal of Radiation Oncology Biology Physics, vol. 18, no. 2, pp. 375–382, 1990. View at Scopus
  33. P. E. Huber, M. Bischof, J. Jenne et al., “Trimodal cancer treatment: beneficial effects of combined antiangiogenesis, radiation, and chemotherapy,” Cancer Research, vol. 65, no. 9, pp. 3643–3655, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. S. L. Hokland and M. R. Horsman, “The new vascular disrupting agent combretastatin-A1-disodium-phosphate (OXi4503) enhances tumour response to mild hyperthermia and thermoradiosensitization,” International Journal of Hyperthermia, vol. 23, no. 7, pp. 599–606, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Murata, J. Overgaard, and M. R. Horsman, “Combretastatin A-4 disodium phosphate: a vascular targeting agent that improves that improves the anti-tumor effects of hyperthermia, radiation, and mild thermoradiotheraphy,” International Journal of Radiation Oncology Biology Physics, vol. 51, no. 4, pp. 1018–1024, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Hines-Peralta, V. Sukhatme, M. Regan, S. Signoretti, Z. J. Liu, and S. N. Goldberg, “Improved tumor destruction with arsenic trioxide and radiofrequency ablation in three animal models,” Radiology, vol. 240, no. 1, pp. 82–89, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. P. J. Dilda, S. Decollogne, L. Weerakoon et al., “Optimization of the antitumor efficacy of a synthetic mitochondrial toxin by increasing the residence time in the cytosol,” Journal of Medicinal Chemistry, vol. 52, no. 20, pp. 6209–6216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. P. J. Dilda and P. J. Hogg, “Arsenical-based cancer drugs,” Cancer Treatment Reviews, vol. 33, no. 6, pp. 542–564, 2007. View at Publisher · View at Google Scholar · View at Scopus