About this Journal Submit a Manuscript Table of Contents
Journal of Oncology
Volume 2013 (2013), Article ID 872957, 9 pages
http://dx.doi.org/10.1155/2013/872957
Research Article

Enhancement of Cisplatin-Mediated Apoptosis in Ovarian Cancer Cells through Potentiating G2/M Arrest and p21 Upregulation by Combinatorial Epigallocatechin Gallate and Sulforaphane

1Department of Biology, University of Alabama at Birmingham, CH175, 1300 University Boulevard, Birmingham, AL 35294-1170, USA
2Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
3Center for Aging, University of Alabama at Birmingham, Birmingham, AL 35294, USA
4Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
5Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
6Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA

Received 19 December 2012; Accepted 10 January 2013

Academic Editor: Jorg Kleeff

Copyright © 2013 Huaping Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Agarwal and S. B. Kaye, “Ovarian cancer: strategies for overcoming resistance to chemotherapy,” Nature Reviews Cancer, vol. 3, no. 7, pp. 502–516, 2003. View at Scopus
  2. H. Chen, T. M. Hardy, and T. O. Tollefsbol, “Epigenomics of ovarian cancer and its chemoprevention,” Frontiers in Genetics, vol. 2, article 67, 2011.
  3. H. G. Wendel, E. De Stanchina, J. S. Fridman et al., “Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy,” Nature, vol. 428, no. 6980, pp. 332–337, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Zhang, C. W. Binns, and A. H. Lee, “Tea consumption and ovarian cancer risk: a case-control study in China,” Cancer Epidemiology Biomarkers and Prevention, vol. 11, no. 8, pp. 713–718, 2002. View at Scopus
  5. J. S. Yoon, A. R. Kristal, K. G. Wicklund, K. L. Cushing-Haugen, and M. A. Rossing, “Coffee, tea, colas, and risk of epithelial ovarian cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 3, pp. 712–716, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. C. M. Nagle, C. M. Olsen, C. J. Bain, D. C. Whiteman, A. C. Green, and P. M. Webb, “Tea consumption and risk of ovarian cancer,” Cancer Causes and Control, vol. 21, no. 9, pp. 1485–1491, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. G. van Poppel, D. T. H. Verhoeven, H. Verhagen, and R. A. Goldbohm, “Brassica vegetables and cancer prevention: epidemiology and mechanisms,” Advances in Experimental Medicine and Biology, vol. 472, pp. 159–168, 1999. View at Scopus
  8. A. Mittal, M. S. Pate, R. C. Wylie, T. O. Tollefsbol, and S. K. Katiyar, “EGCG down-regulates telomerase in human breast carcinoma MCF-7 cells, leading to suppression of cell viability and induction of apoptosis,” International Journal of Oncology, vol. 24, no. 3, pp. 703–710, 2004. View at Scopus
  9. F. Spinella, L. Rosanò, V. Di Castro et al., “Green tea polyphenol epigallocatechin-3-gallate inhibits the endothelin axis and downstream signaling pathways in ovarian carcinoma,” Molecular Cancer Therapeutics, vol. 5, no. 6, pp. 1483–1492, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. B. Berletch, C. Liu, W. K. Love, L. G. Andrews, S. K. Katiyar, and T. O. Tollefsbol, “Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG,” Journal of Cellular Biochemistry, vol. 103, no. 2, pp. 509–519, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Chen, Y. Li, and T. O. Tollefsbol, “Strategies targeting telomerase inhibition,” Molecular Biotechnology, vol. 41, no. 2, pp. 194–199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Z. Fang, Y. Wang, N. Ai et al., “Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines,” Cancer Research, vol. 63, no. 22, pp. 7563–7570, 2003. View at Scopus
  13. R. K. Thimmulappa, K. H. Mai, S. Srisuma, T. W. Kensler, M. Yamamoto, and S. Biswal, “Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray,” Cancer Research, vol. 62, no. 18, pp. 5196–5203, 2002. View at Scopus
  14. S. Langouët, L. L. Furge, N. Kerriguy, K. Nakamura, A. Guillouzo, and F. P. Guengerich, “Inhibition of human cytochrome P450 enzymes by 1,2-dithiole-3-thione, oltipraz and its derivatives, and sulforaphane,” Chemical Research in Toxicology, vol. 13, no. 4, pp. 245–252, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Gamet-Payrastre, P. Li, S. Lumeau et al., “Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells,” Cancer Research, vol. 60, no. 5, pp. 1426–1433, 2000. View at Scopus
  16. E. Bertl, H. Bartsch, and C. Gerhäuser, “Inhibition of angiogenesis and endothelial cell functions are novel sulforaphane-mediated mechanisms in chemoprevention,” Molecular Cancer Therapeutics, vol. 5, no. 3, pp. 575–585, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Heiss, C. Herhaus, K. Klimo, H. Bartsch, and C. Gerhäuser, “Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms,” The Journal of Biological Chemistry, vol. 276, no. 34, pp. 32008–32015, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. M. C. Myzak, P. A. Karplus, F. L. Chung, and R. H. Dashwood, “A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase,” Cancer Research, vol. 64, no. 16, pp. 5767–5774, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. S. W. Huh, S. M. Bae, Y. W. Kim et al., “Anticancer effects of (-)-epigallocatechin-3-gallate on ovarian carcinoma cell lines,” Gynecologic Oncology, vol. 94, no. 3, pp. 760–768, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. R. R. Mi and H. Ni, “MDM2 sensitizes a human ovarian cancer cell line,” Gynecologic Oncology, vol. 90, no. 2, pp. 238–244, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Li, G. Wang, J. Zhao et al., “Antiproliferative effect of β-elemene in chemoresistant ovarian carcinoma cells is mediated through arrest of the cell cycle at the G2-M phase,” Cellular and Molecular Life Sciences, vol. 62, no. 7-8, pp. 894–904, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. L. S. Mangala, V. Zuzel, R. Schmandt et al., “Therapeutic targeting of ATP7B in ovarian carcinoma,” Clinical Cancer Research, vol. 15, no. 11, pp. 3770–3780, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. W. A. Spannuth, L. S. Mangala, R. L. Stone et al., “Converging evidence for efficacy from parallel EphB4-targeted approaches in ovarian carcinoma,” Molecular Cancer Therapeutics, vol. 9, no. 8, pp. 2377–2388, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Katano, A. Kondo, R. Safaei et al., “Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of copper,” Cancer Research, vol. 62, no. 22, pp. 6559–6565, 2002. View at Scopus
  25. M. Z. Fang, Y. Wang, N. Ai et al., “Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines,” Cancer Research, vol. 63, no. 22, pp. 7563–7570, 2003. View at Scopus
  26. H. Wei, X. Zhang, J. F. Zhao, Z. Y. Wang, D. Bickers, and M. Lebwohl, “Scavenging of hydrogen peroxide and inhibition of ultraviolet light- induced oxidative DNA damage by aqueous extracts from green and black teas,” Free Radical Biology and Medicine, vol. 26, no. 11-12, pp. 1427–1435, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. J. W. Fahey and P. Talalay, “Antioxidant functions of sulforaphane: a potent inducer of phase II detoxication enzymes,” Food and Chemical Toxicology, vol. 37, no. 9-10, pp. 973–979, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. B. D. Lawenda, K. M. Kelly, E. J. Ladas, S. M. Sagar, A. Vickers, and J. B. Blumberg, “Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy?” Journal of the National Cancer Institute, vol. 100, no. 11, pp. 773–783, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. K. A. Conklin, “Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness,” Integrative Cancer Therapies, vol. 3, no. 4, pp. 294–300, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Berndtsson, M. Hägg, T. Panaretakis, A. M. Havelka, M. C. Shoshan, and S. Linder, “Acute apoptosis by cisplatin requires induction of reactive oxygen species but is not associated with damage to nuclear DNA,” International Journal of Cancer, vol. 120, no. 1, pp. 175–180, 2007. View at Publisher · View at Google Scholar · View at Scopus