About this Journal Submit a Manuscript Table of Contents
Journal of Oncology
Volume 2013 (2013), Article ID 906495, 19 pages
http://dx.doi.org/10.1155/2013/906495
Review Article

Role of Obesity in the Risk of Breast Cancer: Lessons from Anthropometry

1Nutritional Epidemiology Group, Nutrition and Metabolism Section, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France
2International Prevention Research Institute, 95 Cours Lafayette, 69006 Lyon, France

Received 9 October 2012; Accepted 29 November 2012

Academic Editor: Dagrun Engeset

Copyright © 2013 Amina Amadou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA A Cancer Journal for Clinicians, vol. 55, no. 2, pp. 74–108, 2005. View at Scopus
  3. B. Weigelt, H. M. Horlings, B. Kreike et al., “Refinement of breast cancer classification by molecular characterization of histological special types,” Journal of Pathology, vol. 216, no. 2, pp. 141–150, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. C. M. Perou, T. Sørile, M. B. Eisen et al., “Molecular portraits of human breast tumours,” Nature, vol. 406, no. 6797, pp. 747–752, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Curtis, S. P. Shah, S. F. Chin, et al., “The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups,” Nature, vol. 486, no. 7403, pp. 346–352, 2012.
  6. T. Sørlie, C. M. Perou, R. Tibshirani et al., “Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 19, pp. 10869–10874, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. O. I. Olopade, T. A. Grushko, R. Nanda, and D. Huo, “Advances in breast cancer: pathways to personalized medicine,” Clinical Cancer Research, vol. 14, no. 24, pp. 7988–7999, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Franco-Marina, E. Lazcano-Ponce, and L. López-Carrillo, “Breast cancer mortality in Mexico: an age-period-cohort analysis,” Salud Pública de México, vol. 51, supplement, pp. s157–s164, 2009. View at Scopus
  9. L. C. Velásquez-De Charry, G. Carrasquilla, and S. Roca-Garavito, “Equity in access to treatment for breast cancer in Colombia,” Salud Pública de México, vol. 51, supplement, pp. s246–s253, 2009. View at Scopus
  10. D. Sighoko, E. Bah, J. Haukka et al., “Population-based breast (female) and cervix cancer rates in the Gambia: evidence of ethnicity-related variations,” International Journal of Cancer, vol. 127, no. 10, pp. 2248–2256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. D. M. Parkin, “Global cancer statistics in the year 2000,” Lancet Oncology, vol. 2, no. 9, pp. 533–543, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. M. F. Abdel-Maksoud, B. C. Risendal, M. L. Slattery, A. R. Giuliano, K. B. Baumgartner, and T. E. Byers, “Behavioral risk factors and their relationship to tumor characteristics in Hispanic and non-Hispanic white long-term breast cancer survivors,” Breast Cancer Research and Treatment, pp. 1–8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Ford, D. F. Easton, M. Stratton et al., “Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families,” American Journal of Human Genetics, vol. 62, no. 3, pp. 676–689, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. S. J. Lord, L. Bernstein, K. A. Johnson et al., “Breast cancer risk and hormone receptor status in older women by parity, age of first birth, and breastfeeding: a case-control study,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 7, pp. 1723–1730, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. A. I. Phipps, R. T. Chlebowski, R. Prentice et al., “Reproductive history and oral contraceptive use in relation to risk of triple-negative breast cancer,” Journal of the National Cancer Institute, vol. 103, no. 6, pp. 470–477, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Ursin, L. Bernstein, Y. Wang et al., “Reproductive factors and risk of breast carcinoma in a study of White and African-American women,” Cancer, vol. 101, no. 2, pp. 353–362, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. K. M. Flegal, M. D. Carroll, C. L. Ogden, and L. R. Curtin, “Prevalence and trends in obesity among US adults, 1999–2008,” Journal of the American Medical Association, vol. 303, no. 3, pp. 235–241, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. C. L. Ogden, S. Z. Yanovski, M. D. Carroll, and K. M. Flegal, “The Epidemiology of Obesity,” Gastroenterology, vol. 132, no. 6, pp. 2087–2102, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Wang and M. A. Beydoun, “The obesity epidemic in the United States—gender, age, socioeconomic, racial/ethnic, and geographic characteristics: a systematic review and meta-regression analysis,” Epidemiologic Reviews, vol. 29, no. 1, pp. 6–28, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. L. W. C. Chow, K. L. Lui, J. C. Y. Chan et al., “Association between body mass index and risk of formation of breast cancer in Chinese women,” Asian Journal of Surgery, vol. 28, no. 3, pp. 179–184, 2005. View at Scopus
  21. M. Haftenberger, P. H. Lahmann, S. Panico et al., “Overweight, obesity and fat distribution in 50- to 64-year-old participants in the European Prospective Investigation into Cancer and Nutrition (EPIC),” Public Health Nutrition, vol. 5, no. 6 B, pp. 1147–1162, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Kawai, Y. Minami, S. Kuriyama et al., “Adiposity, adult weight change and breast cancer risk in postmenopausal Japanese women: the miyagi cohort study,” British Journal of Cancer, vol. 103, no. 9, pp. 1443–1447, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. P. H. Lahmann, K. Hoffmann, N. Allen et al., “Body size and breast cancer risk: findings from the European Prospective Investigation into Cancer and Nutrition (EPIC),” International Journal of Cancer, vol. 111, no. 5, pp. 762–771, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Mathew, V. Gajalakshmi, B. Rajan et al., “Anthropometric factors and breast cancer risk among urban and rural women in South India: a multicentric case-control study,” British Journal of Cancer, vol. 99, no. 1, pp. 207–213, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. A. G. Renehan, M. Tyson, M. Egger, R. F. Heller, and M. Zwahlen, “Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies,” The Lancet, vol. 371, no. 9612, pp. 569–578, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Shin, C. E. Matthews, X. O. Shu et al., “Joint effects of body size, energy intake, and physical activity on breast cancer risk,” Breast Cancer Research and Treatment, vol. 113, no. 1, pp. 153–161, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Suzuki, N. Orsini, S. Saji, T. J. Key, and A. Wolk, “Body weight and incidence of breast cancer defined by estrogen and progesterone receptor status-A meta-analysis,” International Journal of Cancer, vol. 124, no. 3, pp. 698–712, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Tehard and F. Clavel-Chapelon, “Several anthropometric measurements and breast cancer risk: results of the E3N cohort study,” International Journal of Obesity, vol. 30, no. 1, pp. 156–163, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. P. A. Van Den Brandt, D. Spiegelman, S. S. Yaun et al., “Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk,” American Journal of Epidemiology, vol. 152, no. 6, pp. 514–527, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Berstad, R. J. Coates, L. Bernstein et al., “A case-control study of body mass index and breast cancer risk in white and African-American women,” Cancer Epidemiology Biomarkers and Prevention, vol. 19, no. 6, pp. 1532–1544, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. H. R. Harris, W. C. Willett, K. L. Terry, and K. B. Michels, “Body fat distribution and risk of premenopausal breast cancer in the nurses' health study II,” Journal of the National Cancer Institute, vol. 103, no. 3, pp. 273–278, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Harvie, L. Hooper, and A. H. Howell, “Central obesity and breast cancer risk: a systematic review,” Obesity Reviews, vol. 4, no. 3, pp. 157–173, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. E.-H. Ng, F. Gao, C.-Y. Ji, G.-H. Ho, and K.-C. Soo, “Risk factors for breast carcinoma in Singaporean Chinese women: the role of central obesity,” Cancer, vol. 80, no. 4, pp. 725–731, 1997. View at Publisher · View at Google Scholar
  34. T. O. Ogundiran, D. Huo, A. Adenipekun et al., “Case-control study of body size and breast cancer risk in Nigerian women,” American Journal of Epidemiology, vol. 172, no. 6, pp. 682–690, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. J. R. Palmer, L. L. Adams-Campbell, D. A. Boggs, L. A. Wise, and L. Rosenberg, “A prospective study of body size and breast cancer in black women,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 9, pp. 1795–1802, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. M. L. Slattery, C. Sweeney, S. Edwards et al., “Body size, weight change, fat distribution and breast cancer risk in Hispanic and non-Hispanic white women,” Breast Cancer Research and Treatment, vol. 102, no. 1, pp. 85–101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. B. S. Connolly, C. Barnett, K. N. Vogt, T. Li, J. Stone, and N. F. Boyd, “A meta-analysis of published literature on waist-to-hip ratio and risk of breast cancer,” Nutrition and Cancer, vol. 44, no. 2, pp. 127–138, 2002. View at Scopus
  38. Z. Huang, W. C. Willett, G. A. Colditz et al., “Waist circumference, waist:hip ratio, and risk of breast cancer in the Nurses' Health Study,” American Journal of Epidemiology, vol. 150, no. 12, pp. 1316–1324, 1999. View at Scopus
  39. A. H. Wu, M. C. Yu, C. C. Tseng, and M. C. Pike, “Body size, hormone therapy and risk of breast cancer in Asian-American women,” International Journal of Cancer, vol. 120, no. 4, pp. 844–852, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. I. J. Hall, B. Newman, R. C. Millikan, and P. G. Moorman, “Body size and breast cancer risk in Black women and White women: the Carolina breast cancer study,” American Journal of Epidemiology, vol. 151, no. 8, pp. 754–764, 2000. View at Scopus
  41. S. Ehtisham, N. Crabtree, P. Clark, N. Shaw, and T. Barrett, “Ethnic differences in insulin resistance and body composition in United Kingdom adolescents,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 7, pp. 3963–3969, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Liu, N. M. Byrne, M. Kagawa et al., “Ethnic differences in the relationship between body mass index and percentage body fat among Asian children from different backgrounds,” British Journal of Nutrition, vol. 106, no. 9, pp. 1390–1397, 2011. View at Publisher · View at Google Scholar
  43. E. C. Rush, I. Freitas, and L. D. Plank, “Body size, body composition and fat distribution: comparative analysis of European, Maori, Pacific Island and Asian Indian adults,” British Journal of Nutrition, vol. 102, no. 4, pp. 632–641, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Bardia, C. M. Vachon, J. E. Olson et al., “Relative weight at age 12 and risk of postmenopausal breast cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 2, pp. 374–378, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. H. J. Baer, S. S. Tworoger, S. E. Hankinson, and W. C. Willett, “Body fatness at young ages and risk of breast cancer throughout life,” American Journal of Epidemiology, vol. 171, no. 11, pp. 1183–1194, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Kuriyama, Y. Tsubono, A. Hozawa et al., “Obesity and risk of cancer in Japan,” International Journal of Cancer, vol. 113, no. 1, pp. 148–157, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Iwasaki, T. Otani, M. Inoue, S. Sasazuki, and S. Tsugane, “Body size and risk for breast cancer in relation to estrogen and progesterone receptor status in Japan,” Annals of Epidemiology, vol. 17, no. 4, pp. 304–312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. C. M. Friedenreich, K. S. Courneya, and H. E. Bryant, “Case-control study of anthropometric measures and breast cancer risk,” International Journal of Cancer, vol. 99, no. 3, pp. 445–452, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. C. A. Adebamowo, T. O. Ogundiran, A. A. Adenipekun et al., “Obesity and height in urban Nigerian women with breast cancer,” Annals of Epidemiology, vol. 13, no. 6, pp. 455–461, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Wenten, F. D. Gilliland, K. Baumgartner, and J. M. Samet, “Associations of weight, weight change, and body mass with breast cancer risk in Hispanic and non-Hispanic white women,” Annals of Epidemiology, vol. 12, no. 6, pp. 435–444, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Sarkissyan, Y. Wu, and J. V. Vadgama, “Obesity is associated with breast cancer in African-American women but not Hispanic women in South Los Angeles,” Cancer, vol. 117, no. 16, pp. 3814–3823, 2011. View at Publisher · View at Google Scholar
  52. A. Liberati, D. G. Altman, J. Tetzlaff et al., “The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration,” British Medical Journal, vol. 339, article b2700, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. E. Weiderpass, T. Braaten, C. Magnusson et al., “A prospective study of body size in different periods of life and risk of premenopausal breast cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 13, no. 7, pp. 1121–1127, 2004. View at Scopus
  54. H. J. Baer, G. A. Colditz, B. Rosner et al., “Body fatness during childhood and adolescence and incidence of breast cancer in premenopausal women: a prospective cohort study,” Breast Cancer Research, vol. 7, no. 3, pp. R314–R325, 2005. View at Scopus
  55. M. H. Wu, Y. C. Chou, J. C. Yu et al., “Hormonal and body-size factors in relation to breast cancer risk: a prospective study of 11,889 women in a low-incidence area,” Annals of Epidemiology, vol. 16, no. 3, pp. 223–229, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. S. M. Enger, R. K. Ross, A. Paganini-Hill, C. L. Carpenter, and L. Bernstein, “Body size, physical activity, and breast cancer hormone receptor status: results from two case-control studies,” Cancer Epidemiology Biomarkers and Prevention, vol. 9, no. 7, pp. 681–687, 2000. View at Scopus
  57. C. M. K. Magnusson and A. W. Roddam, “Breast cancer and childhood anthropometry: emerging hypotheses?” Breast Cancer Research, vol. 7, no. 3, pp. 83–85, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. E. M. John, M. Sangaramoorthy, A. I. Phipps, J. Koo, and P. L. Horn-Ross, “Adult body size, hormone receptor status, and premenopausal breast cancer risk in a multiethnic population,” American Journal of Epidemiology, vol. 173, no. 2, pp. 201–216, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Sangaramoorthy, A. I. Phipps, P. L. Horn-Ross, J. Koo, and E. M. John, “Early-life factors and breast cancer risk in Hispanic women: the role of adolescent body size,” Cancer Epidemiology Biomarkers and Prevention, vol. 20, no. 12, pp. 2572–2582, 2011. View at Publisher · View at Google Scholar
  60. H. Ma, L. Bernstein, R. K. Ross, and G. Ursin, “Hormone-related risk factors for breast cancer in women under age 50 years by estrogen and progesterone receptor status: results from a case-control and a case-case comparison,” Breast Cancer Research, vol. 8, no. 4, article R39, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. World Health Organization, Obesity and Overweight, 2012, http://www.who.int/mediacentre/factsheets/fs311/en/.
  62. P. Deurenberg, M. D. Yap, J. Wang, F. P. Lin, and G. Schmidt, “The impact of body build on the relationship between body mass index and percent body fat,” International Journal of Obesity, vol. 23, no. 5, pp. 537–542, 1999. View at Scopus
  63. P. Deurenberg, M. Deurenberg-Yap, and S. Guricci, “Asians are different from Caucasians and from each other in their body mass index/body fat per cent relationship,” Obesity Reviews, vol. 3, no. 3, pp. 141–146, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. E. C. Rush, J. H. Goedecke, C. Jennings et al., “BMI, fat and muscle differences in urban women of five ethnicities from two countries,” International Journal of Obesity, vol. 31, no. 8, pp. 1232–1239, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Kagawa, D. Kerr, H. Uchida, and C. W. Binns, “Differences in the relationship between BMI and percentage body fat between Japanese and Australian-Caucasian young men,” British Journal of Nutrition, vol. 95, no. 5, pp. 1002–1007, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. World Health Organization, “The Global 8 Burden of Disease: 2004 update,” 2008, http://www.who.int/healthinfo/global_burden_disease/GBD_report_2004update_full.pdf.
  67. W. Y. Huang, B. Newman, R. C. Millikan, M. J. Schell, B. S. Hulka, and P. G. Moorman, “Hormone-related factors and risk of breast cancer in relation to estrogen receptor and progesterone receptor status,” American Journal of Epidemiology, vol. 151, no. 7, pp. 703–714, 2000. View at Scopus
  68. F. D. Gilliland, W. C. Hunt, K. B. Baumgartner et al., “Reproductive risk factors for breast cancer in hispanic and non-hispanic white women: the new mexico women's health study,” American Journal of Epidemiology, vol. 148, no. 7, pp. 683–692, 1998. View at Scopus
  69. K. R. Sexton, L. Franzini, R. S. Day, A. Brewster, S. W. Vernon, and M. L. Bondy, “A review of body size and breast cancer risk in Hispanic and African American women,” Cancer, vol. 117, no. 23, pp. 5271–5281, 2011. View at Publisher · View at Google Scholar
  70. A. Molarius and J. C. Seidell, “Selection of anthropometric indicators for classification of abdominal fatness—a critical review,” International Journal of Obesity, vol. 22, no. 8, pp. 719–727, 1998. View at Scopus
  71. C. A. Adebamowo, T. O. Ogundiran, A. A. Adenipekun et al., “Waist-hip ratio and breast cancer risk in urbanized Nigerian women,” Breast Cancer Research, vol. 5, no. 2, pp. R18–R24, 2003. View at Scopus
  72. S. Jordan, L. Lim, D. Vilainerun et al., “Breast cancer in the Thai Cohort Study: an exploratory case-control analysis,” Breast, vol. 18, no. 5, pp. 299–303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. L. M. Browning, S. D. Hsieh, and M. Ashwell, “A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 05 could be a suitable global boundary value,” Nutrition Research Reviews, vol. 23, no. 2, pp. 247–269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. C. M. Y. Lee, R. R. Huxley, R. P. Wildman, and M. Woodward, “Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: a meta-analysis,” Journal of Clinical Epidemiology, vol. 61, no. 7, pp. 646–653, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. X. R. Yang, J. Chang-Claude, E. L. Goode et al., “Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the breast cancer association consortium studies,” Journal of the National Cancer Institute, vol. 103, no. 3, pp. 250–263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. J. E. Chu and A. L. Allan, “The role of cancer stem cells in the organ tropism of breast cancer metastasis: a mechanistic balance between the “Seed” and the “Soil”?” International Journal of Breast Cancer, vol. 2012, Article ID 209748, 12 pages, 2012. View at Publisher · View at Google Scholar
  77. D. Trichopoulos, P. Lagiou, and H. O. Adami, “The crucial role of the number of mammary tissue-specific stem cells,” Breast Cancer Research, vol. 7, no. 1, pp. 13–17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. J. P. Bayley and P. Devilee, “Warburg tumours and the mechanisms of mitochondrial tumour suppressor genes. Barking up the right tree?” Current Opinion in Genetics and Development, vol. 20, no. 3, pp. 324–329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. J. P. Bayley and P. Devilee, “The Warburg effect in 2012,” Current Opinion in Oncology, vol. 24, no. 1, pp. 62–67, 2012.
  80. A. G. Renehan, D. L. Roberts, and C. Dive, “Obesity and cancer: pathophysiological and biological mechanisms,” Archives of Physiology and Biochemistry, vol. 114, no. 1, pp. 71–83, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. R. C. Travis and T. J. Key, “Oestrogen exposure and breast cancer risk,” Breast Cancer Research, vol. 5, no. 5, pp. 239–247, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. T. J. Key, P. N. Appleby, G. K. Reeves, and A. W. Roddam, “Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies,” The Lancet Oncology, vol. 11, no. 6, pp. 530–542, 2010. View at Publisher · View at Google Scholar
  83. C. Schairer, D. Hill, S. R. Sturgeon et al., “Serum concentrations of IGF-I, IGFBP-3 and c-peptide and risk of hyperplasia and cancer of the breast in postmenopausal women,” International Journal of Cancer, vol. 108, no. 5, pp. 773–779, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. P. Toniolo, P. F. Bruning, A. Akhmedkhanov et al., “Serum insulin-like growth factor-I and breast cancer,” International Journal of Cancer, vol. 88, no. 5, pp. 828–832, 2000. View at Publisher · View at Google Scholar
  85. E. E. Calle and R. Kaaks, “Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms,” Nature Reviews Cancer, vol. 4, no. 8, pp. 579–591, 2004. View at Scopus
  86. T. J. Key, “Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies,” Journal of the National Cancer Institute, vol. 94, no. 8, pp. 606–616, 2002. View at Scopus
  87. M. C. Pike, D. V. Spicer, L. Dahmoush, and M. F. Press, “Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk,” Epidemiologic Reviews, vol. 15, no. 1, pp. 17–35, 1993. View at Scopus