About this Journal Submit a Manuscript Table of Contents
Journal of Obesity
Volume 2011 (2011), Article ID 431985, 14 pages
http://dx.doi.org/10.1155/2011/431985
Review Article

Anti-Inflammatory Nutrition as a Pharmacological Approach to Treat Obesity

1Inflammation Research Foundation, Marblehead, MA 01945, USA
2Diabetes Research Institute, University of Miami, Miami, FL 33316, USA

Received 5 May 2010; Accepted 17 August 2010

Academic Editor: A. Halpern

Copyright © 2011 Barry Sears and Camillo Ricordi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Vachharajani and D. N. Granger, “Adipose tissue: a motor for the inflammation associated with obesity,” IUBMB life, vol. 61, no. 4, pp. 424–430, 2009. View at Publisher · View at Google Scholar · View at PubMed
  2. J. M. Olefsky, “IKKε: a bridge between obesity and inflammation,” Cell, vol. 138, no. 5, pp. 834–836, 2009. View at Publisher · View at Google Scholar · View at PubMed
  3. K. E. Wellen and G. S. Hotamisligil, “Obesity-induced inflammatory changes in adipose tissue,” Journal of Clinical Investigation, vol. 112, no. 12, pp. 1785–1788, 2003. View at Publisher · View at Google Scholar
  4. K. M. Flegal, M. D. Carroll, C. L. Ogden, and L. R. Curtin, “Prevalence and trends in obesity among US adults, 1999–2008,” Journal of the American Medical Association, vol. 303, no. 3, pp. 235–241, 2010. View at Publisher · View at Google Scholar · View at PubMed
  5. C. N. Serhan, S. D. Brain, C. D. Buckley et al., “Resolution of inflammation: state of the art, definitions and terms,” FASEB Journal, vol. 21, no. 2, pp. 325–332, 2007. View at Publisher · View at Google Scholar · View at PubMed
  6. C. N. Serhan, “Resolution phase of inflammation: novel endogenous anti-inflammatory and pro-resolving lipid mediators and pathways,” Annual Review of Immunology, vol. 25, pp. 101–137, 2007.
  7. B Sears, OmegaRx Zone, Regan Books, New York, NY, USA, 2002.
  8. B. Sears, The Anti-Inflammation Zone, Regan Books, New York, NY, USA, 2005.
  9. B Sears, Toxic Fat, Regan Books, New York, NY, USA, 2008.
  10. G. S. Hotamisligil and E. Erbay, “Nutrient sensing and inflammation in metabolic diseases,” Nature Reviews Immunology, vol. 8, no. 12, pp. 923–934, 2008. View at Publisher · View at Google Scholar · View at PubMed
  11. E. Kopp and S. Ghosh, “Inhibition of NF-κB by sodium salicylate and aspirin,” Science, vol. 265, no. 5174, pp. 956–959, 1994.
  12. H. Hölschermann, D. Schuster, B. Parviz, W. Haberbosch, H. Tillmanns, and H. Muth, “Statins prevent NF-κB transactivation independently of the IKK-pathway in human endothelial cells,” Atherosclerosis, vol. 185, no. 2, pp. 240–245, 2006. View at Publisher · View at Google Scholar · View at PubMed
  13. A. R. Tall, “C-reactive protein reassessed,” The New England Journal of Medicine, vol. 350, no. 14, pp. 1450–1452, 2004. View at Publisher · View at Google Scholar · View at PubMed
  14. B. Campbell, T. Badrick, R. Flatman, and D. Kanowski, “Limited clinical utility of high-sensitivity plasma C-reactive protein assays,” Annals of Clinical Biochemistry, vol. 39, no. 2, pp. 85–88, 2002. View at Publisher · View at Google Scholar
  15. B. Campbell, R. Flatman, T. Badrick et al., “Problems with high-sensitivity C-reactive protein,” Clinical Chemistry, vol. 49, no. 1, pp. 201–202, 2003. View at Publisher · View at Google Scholar
  16. D. J. A. Jenkins, T. M. S. Wolever, and R. H. Taylor, “Glycemic index of foods: a physiological basis for carbohydrate exchange,” American Journal of Clinical Nutrition, vol. 34, no. 3, pp. 362–366, 1981.
  17. D. S. Ludwig, “The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease,” Journal of the American Medical Association, vol. 287, no. 18, pp. 2414–2423, 2002.
  18. A. Drewnowski and S. E. Specter, “Poverty and obesity: the role of energy density and energy costs,” American Journal of Clinical Nutrition, vol. 79, no. 1, pp. 6–16, 2004.
  19. A. Drewnoswsi, A. S. Hanks, and T. G. Smith, Trade, Food, Diet, and Health, Wiley-Blackwell, West Sussex, UK, 2010.
  20. N. Darmon, M. Darmon, M. Maillot, and A. Drewnowski, “A nutrient density standard for vegetables and fruits: nutrients per calorie and nutrients per unit cost,” Journal of the American Dietetic Association, vol. 105, no. 12, pp. 1881–1887, 2005. View at Publisher · View at Google Scholar · View at PubMed
  21. A. Drewnowski, N. Darmon, and A. Briend, “Replacing fats and sweets with vegetables and fruits—a question of cost,” American Journal of Public Health, vol. 94, no. 9, pp. 1555–1559, 2004.
  22. P. Monsivais and A. Drewnowski, “The rising cost of low-energy-density foods,” Journal of the American Dietetic Association, vol. 107, no. 12, pp. 2071–2076, 2007. View at Publisher · View at Google Scholar · View at PubMed
  23. F. B. Hu, M. J. Stampfer, J. E. Manson et al., “Dietary fat intake and the risk of coronary heart disease in women,” The New England Journal of Medicine, vol. 337, no. 21, pp. 1491–1499, 1997. View at Publisher · View at Google Scholar · View at PubMed
  24. W. C. Willett, “The role of dietary n-6 fatty acids in the prevention of cardiovascular disease,” Journal of Cardiovascular Medicine, vol. 8, supplement 1, pp. S42–S45, 2007. View at Publisher · View at Google Scholar · View at PubMed
  25. M. de Lorgeril, S. Renaud, N. Mamelle et al., “Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease,” The Lancet, vol. 343, no. 8911, pp. 1454–1459, 1994. View at Publisher · View at Google Scholar
  26. M. de Lorgeril, P. Salen, J.-L. Martin, I. Monjaud, J. Delaye, and N. Mamelle, “Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study,” Circulation, vol. 99, no. 6, pp. 779–785, 1999.
  27. R. R. Brenner, “Nutritional and hormonal factors influencing desaturation of essential fatty acids,” Progress in Lipid Research, vol. 20, no. 1, pp. 41–48, 1982.
  28. S. El Boustani, J. E. Causse, B. Descomps, L. Monnier, F. Mendy, and A. Crastes de Paulet, “Direct in vivo characterization of delta 5 desaturase activity in humans by deuterium labeling: effect of insulin,” Metabolism, vol. 38, no. 4, pp. 315–321, 1989.
  29. T. Pelikanova, M. Kohout, J. Base et al., “Effect of acute hyperinsulinemia on fatty acid composition of serum lipids in non-insulin-dependent diabetics and healthy men,” Clinica Chimica Acta, vol. 203, no. 2-3, pp. 329–337, 1991.
  30. R. R. Brenner, “Hormonal modulation of δ-6 and δ-5 desaturases: case of diabetes,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 68, no. 2, pp. 151–162, 2003. View at Publisher · View at Google Scholar
  31. C. N. Serhan, M. Arita, S. Hong, and K. Gotlinger, “Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers,” Lipids, vol. 39, no. 11, pp. 1125–1132, 2004. View at Publisher · View at Google Scholar
  32. C. N. Serhan, “Novel ω-3-derived local mediators in anti-inflammation and resolution,” Pharmacology and Therapeutics, vol. 105, no. 1, pp. 7–21, 2005. View at Publisher · View at Google Scholar · View at PubMed
  33. H. Seki, Y. Tani, and M. Arita, “Omega-3 PUFA derived anti-inflammatory lipid mediator resolvin E1,” Prostaglandins and Other Lipid Mediators, vol. 89, no. 3-4, pp. 126–130, 2009. View at Publisher · View at Google Scholar · View at PubMed
  34. H. Hasturk, A. Kantarci, E. Goguet-Surmenian et al., “Resolvin E1 regulates inflammation at the cellular and tissue level and restores tissue homeostasis in vivo,” Journal of Immunology, vol. 179, no. 10, pp. 7021–7029, 2007.
  35. A. P. Simopoulos, “Essential fatty acids in health and chronic disease,” American Journal of Clinical Nutrition, vol. 70, no. 3, supplement, pp. 560S–569S, 1999.
  36. A. D. Karelis, M. Faraj, J.-P. Bastard et al., “The metabolically healthy but obese individual presents a favorable inflammation profile,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 7, pp. 4145–4150, 2005. View at Publisher · View at Google Scholar · View at PubMed
  37. R. P. Wildman, P. Muntner, K. Reynolds et al., “The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004),” Archives of Internal Medicine, vol. 168, no. 15, pp. 1617–1624, 2008. View at Publisher · View at Google Scholar · View at PubMed
  38. R. H. Unger, “Lipotoxic diseases,” Annual Review of Medicine, vol. 53, pp. 319–336, 2002. View at Publisher · View at Google Scholar · View at PubMed
  39. R. H. Unger, “Weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome,” Endocrinology, vol. 144, no. 12, pp. 5159–5165, 2003. View at Publisher · View at Google Scholar · View at PubMed
  40. R. H. Unger, G. O. Clark, P. E. Scherer, and L. Orci, “Lipid homeostasis, lipotoxicity and the metabolic syndrome,” Biochimica et Biophysica Acta, vol. 1801, no. 3, pp. 209–214, 2010. View at Publisher · View at Google Scholar · View at PubMed
  41. S. Virtue and A. Vidal-Puig, “Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome—an allostatic perspective,” Biochimica et Biophysica Acta, vol. 1801, no. 3, pp. 338–349, 2010. View at Publisher · View at Google Scholar · View at PubMed
  42. F. Massiera, P. Saint-Marc, J. Seydoux et al., “Arachidonic acid and prostacyclin signaling promote adipose tissue development: a human health concern?” Journal of Lipid Research, vol. 44, no. 2, pp. 271–279, 2003. View at Publisher · View at Google Scholar · View at PubMed
  43. M. A. Mazid, A. A. Chowdhury, K. Nagao et al., “Endogenous 15-deoxy-Δ12,14-prostaglandin J2 synthesized by adipocytes during maturation phase contributes to upregulation of fat storage,” FEBS Letters, vol. 580, no. 30, pp. 6885–6890, 2006. View at Publisher · View at Google Scholar · View at PubMed
  44. S. C. Savva, C. Chadjigeorgiou, C. Hatzis et al., “Association of adipose tissue arachidonic acid content with BMI and overweight status in children from Cyprus and Crete,” British Journal of Nutrition, vol. 91, no. 4, pp. 643–649, 2004. View at Publisher · View at Google Scholar · View at PubMed
  45. I. Talukdar, W. Szeszel-Fedorowicz, and L. M. Salati, “Arachidonic acid inhibits the insulin induction of glucose-6-phosphate dehydrogenase via p38 MAP kinase,” Journal of Biological Chemistry, vol. 280, no. 49, pp. 40660–40667, 2005. View at Publisher · View at Google Scholar · View at PubMed
  46. D. D. Sears, P. D. Miles, J. Chapman et al., “12/15-lipoxygenase is equired for the early onset of high fat diet-induced adipose tissue inflammation and insulin resistance in mice,” PLoS ONE, vol. 4, no. 9, Article ID e7250, 2009. View at Publisher · View at Google Scholar · View at PubMed
  47. S. K. Chakrabarti, B. K. Cole, Y. Wen, S. R. Keller, and J. L. Nadler, “12/15-lipoxygenase products induce inflammation and impair insulin signaling in 3T3-L1 adipocytes,” Obesity, vol. 17, no. 9, pp. 1657–1663, 2009. View at Publisher · View at Google Scholar · View at PubMed
  48. L. M. Botion and A. Green, “Long-term regulation of lipolysis and hormone-sensitive lipase by insulin and glucose,” Diabetes, vol. 48, no. 9, pp. 1691–1697, 1999. View at Publisher · View at Google Scholar
  49. G. Haemmerle, R. Zimmermann, and R. Zechner, “Letting lipids go: hormone-sensitive lipase,” Current Opinion in Lipidology, vol. 14, no. 3, pp. 289–297, 2003. View at Publisher · View at Google Scholar
  50. E. S. Williams, A. Baylin, and H. Campos, “Adipose tissue arachidonic acid and the metabolic syndrome in Costa Rican adults,” Clinical Nutrition, vol. 26, no. 4, pp. 474–482, 2007. View at Publisher · View at Google Scholar · View at PubMed
  51. L. Aldamiz-Echevarria, J. A. Prieto, F. Andrade, J. Elorz, P. Sanjurjo, and J. R. Soriano, “Arachidonic acid content in adipose tissue is associated with insulin resistance in healthy children,” Journal of Pediatric Gastroenterology and Nutrition, vol. 44, no. 1, pp. 77–83, 2007. View at Publisher · View at Google Scholar · View at PubMed
  52. T. McLaughlin, A. Sherman, P. Tsao et al., “Enhanced proportion of small adipose cells in insulin-resistant vs insulin-sensitive obese individuals implicates impaired adipogenesis,” Diabetologia, vol. 50, no. 8, pp. 1707–1715, 2007. View at Publisher · View at Google Scholar · View at PubMed
  53. C. Pompeia, T. Lima, and R. Curi, “Arachidonic acid cytotoxicity: can arachidonic acid be a physiological mediator of cell death?” Cell Biochemistry and Function, vol. 21, no. 2, pp. 97–104, 2003. View at Publisher · View at Google Scholar · View at PubMed
  54. S. P. Weisberg, D. McCann, M. Desai, M. Rosenbaum, R. L. Leibel, and A. W. Ferrante Jr., “Obesity is associated with macrophage accumulation in adipose tissue,” Journal of Clinical Investigation, vol. 112, no. 12, pp. 1796–1808, 2003. View at Publisher · View at Google Scholar · View at PubMed
  55. H. Xu, G. T. Barnes, Q. Yang et al., “Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance,” Journal of Clinical Investigation, vol. 112, no. 12, pp. 1821–1830, 2003. View at Publisher · View at Google Scholar · View at PubMed
  56. E. Ortega Martinez de Victoria, X. Xu, J. Koska et al., “Macrophage content in subcutaneous adipose tissue: associations with adiposity, age, inflammatory markers, and whole-body insulin action in healthy pima Indians,” Diabetes, vol. 58, no. 2, pp. 385–393, 2009. View at Publisher · View at Google Scholar · View at PubMed
  57. A. Festa, R. D'Agostino Jr., G. Howard, L. Mykkänen, R. P. Tracy, and S. M. Haffner, “Chronic subclinical inflammation as part of the insulin resistance syndrome: the insulin resistance atherosclerosis study (IRAS),” Circulation, vol. 102, no. 1, pp. 42–47, 2000.
  58. H. Ruan and H. F. Lodish, “Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factor-α,” Cytokine and Growth Factor Reviews, vol. 14, no. 5, pp. 447–455, 2003. View at Publisher · View at Google Scholar
  59. P. A. Permana, C. Menge, and P. D. Reaven, “Macrophage-secreted factors induce adipocyte inflammation and insulin resistance,” Biochemical and Biophysical Research Communications, vol. 341, no. 2, pp. 507–514, 2006. View at Publisher · View at Google Scholar · View at PubMed
  60. S. E. Shoelson, J. Lee, and A. B. Goldfine, “Inflammation and insulin resistance,” Journal of Clinical Investigation, vol. 116, no. 7, pp. 1793–1801, 2006. View at Publisher · View at Google Scholar · View at PubMed
  61. J. G. Neels and J. M. Olefsky, “Inflamed fat: what starts the fire?” Journal of Clinical Investigation, vol. 116, no. 1, pp. 33–35, 2006. View at Publisher · View at Google Scholar · View at PubMed
  62. S. Cinti, G. Mitchell, G. Barbatelli et al., “Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans,” Journal of Lipid Research, vol. 46, no. 11, pp. 2347–2355, 2005. View at Publisher · View at Google Scholar · View at PubMed
  63. Y.-H. Lee and R. E. Pratley, “The evolving role of inflammation in obesity and the metabolic syndrome,” Current Diabetes Reports, vol. 5, no. 1, pp. 70–75, 2005.
  64. J. S. Yudkin, “Inflammation, obesity, and the metabolic syndrome,” Hormone and Metabolic Research, vol. 39, no. 10, pp. 707–709, 2007. View at Publisher · View at Google Scholar · View at PubMed
  65. L. K. Heilbronn and L. V. Campbell, “Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity,” Current Pharmaceutical Design, vol. 14, no. 12, pp. 1225–1230, 2008. View at Publisher · View at Google Scholar
  66. C. de Luca and J. M. Olefsky, “Inflammation and insulin resistance,” FEBS Letters, vol. 582, no. 1, pp. 97–105, 2008. View at Publisher · View at Google Scholar · View at PubMed
  67. U. Kintscher, M. Hartge, K. Hess et al., “T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 7, pp. 1304–1310, 2008. View at Publisher · View at Google Scholar · View at PubMed
  68. S. E. Kahn, R. L. Hull, and K. M. Utzschneider, “Mechanisms linking obesity to insulin resistance and type 2 diabetes,” Nature, vol. 444, no. 7121, pp. 840–846, 2007. View at Publisher · View at Google Scholar · View at PubMed
  69. J. A. Chavez and S. A. Summers, “Lipid oversupply, selective insulin resistance, and lipotoxicity: molecular mechanisms,” Biochimica et Biophysica Acta, vol. 1801, no. 3, pp. 252–265, 2010. View at Publisher · View at Google Scholar · View at PubMed
  70. J. Todoric, M. Löffler, J. Huber et al., “Adipose tissue inflammation induced by high-fat diet in obese diabetic mice is prevented by n-3 polyunsaturated fatty acids,” Diabetologia, vol. 49, no. 9, pp. 2109–2119, 2006. View at Publisher · View at Google Scholar · View at PubMed
  71. J. Huber, M. Löffler, M. Bilban et al., “Prevention of high-fat diet-induced adipose tissue remodeling in obese diabetic mice by n-3 polyunsaturated fatty acids,” International Journal of Obesity, vol. 31, no. 6, pp. 1004–1013, 2007. View at Publisher · View at Google Scholar · View at PubMed
  72. P. Perez-Martinez, F. Perez-Jimenez, and J. Lopez-Miranda, “n-3 PUFA and lipotoxicity,” Biochimica et Biophysica Acta, vol. 1801, no. 3, pp. 362–366, 2010. View at Publisher · View at Google Scholar · View at PubMed
  73. X.-M. T. Nguyen, J. Lane, B. R. Smith, and N. T. Nguyen, “Changes in inflammatory biomarkers across weight classes in a representative US population: a link between obesity and inflammation,” Journal of Gastrointestinal Surgery, vol. 13, no. 7, pp. 1205–1212, 2009. View at Publisher · View at Google Scholar · View at PubMed
  74. C. A. Aguilar-Salinas, E. García, L. Robles et al., “High adiponectin concentrations are associated with the metabolically healthy obese phenotype,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 10, pp. 4075–4079, 2008. View at Publisher · View at Google Scholar · View at PubMed
  75. J.-Y. Kim, E. Van De Wall, M. Laplante et al., “Obesity-associated improvements in metabolic profile through expansion of adipose tissue,” Journal of Clinical Investigation, vol. 117, no. 9, pp. 2621–2637, 2007. View at Publisher · View at Google Scholar · View at PubMed
  76. S. Neschen, K. Morino, J. C. Rossbacher et al., “Fish oil regulates adiponectin secretion by a peroxisome proliferator-activated receptor-γ-dependent mechanism in mice,” Diabetes, vol. 55, no. 4, pp. 924–928, 2006. View at Publisher · View at Google Scholar
  77. A. Banga, R. Unal, P. Tripathi et al., “Adiponectin translation is increased by the PPARγ agonists pioglitazone and ω-3 fatty acids,” American Journal of Physiology, vol. 296, no. 3, pp. E480–E489, 2009. View at Publisher · View at Google Scholar · View at PubMed
  78. M. Itoh, T. Suganami, N. Satoh et al., “Increased adiponectin secretion by highly purified eicosapentaenoic acid in rodent models of obesity and human obese subjects,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 9, pp. 1918–1925, 2007. View at Publisher · View at Google Scholar · View at PubMed
  79. R. H. Unger and Y.-T. Zhou, “Lipotoxicity of β-cells in obesity and in other causes of fatty acid spillover,” Diabetes, vol. 50, supplement 1, pp. S118–S121, 2001.
  80. A. Baylin and H. Campos, “Arachidonic acid in adipose tissue is associated with nonfatal acute myocardial infarction in the Central Valley of Costa Rica,” Journal of Nutrition, vol. 134, no. 11, pp. 3095–3099, 2004.
  81. P. M. Ridker, E. Danielson, F. A. H. Fonseca et al., “Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein,” The New England Journal of Medicine, vol. 359, no. 21, pp. 2195–2207, 2008. View at Publisher · View at Google Scholar · View at PubMed
  82. J.-C. Fruchart and P. Duriez, “Mode of action of fibrates in the regulation of triglyceride and HDL-cholesterol metabolism,” Drugs of Today, vol. 42, no. 1, pp. 39–64, 2006. View at Publisher · View at Google Scholar · View at PubMed
  83. D. B. Savage, “PPARγ as a metabolic regulator: insights from genomics and pharmacology,” Expert Reviews in Molecular Medicine, vol. 7, no. 1, pp. 1–16, 2005. View at Publisher · View at Google Scholar · View at PubMed
  84. M. Studer, M. Briel, B. Leimenstoll, T. R. Glass, and H. C. Bucher, “Effect of different antilipidemic agents and diets on mortality: a systematic review,” Archives of Internal Medicine, vol. 165, no. 7, pp. 725–730, 2005. View at Publisher · View at Google Scholar · View at PubMed
  85. S. E. Nissen and K. Wolski, “Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes,” The New England Journal of Medicine, vol. 356, no. 24, pp. 2457–2471, 2007.
  86. Y. Hattori, K. Suzuki, S. Hattori, and K. Kasai, “Metformin inhibits cytokine-induced nuclear factor κB activation via AMP-activated protein kinase activation in vascular endothelial cells,” Hypertension, vol. 47, no. 6, pp. 1183–1188, 2006. View at Publisher · View at Google Scholar · View at PubMed
  87. L. G. D. Fryer, A. Parbu-Patel, and D. Carling, “The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways,” Journal of Biological Chemistry, vol. 277, no. 28, pp. 25226–25232, 2002. View at Publisher · View at Google Scholar · View at PubMed
  88. A. K. F. Wong, J. Howie, J. R. Petrie, and C. C. Lang, “AMP-activated protein kinase pathway: a potential therapeutic target in cardiometabolic disease,” Clinical Science, vol. 116, no. 8, pp. 607–620, 2009. View at Publisher · View at Google Scholar · View at PubMed
  89. A. Golay, “Metformin and body weight,” International Journal of Obesity, vol. 32, no. 1, pp. 61–72, 2008. View at Publisher · View at Google Scholar · View at PubMed
  90. R. Christensen, P. K. Kristensen, E. M. Bartels, H. Bliddal, and A. Astrup, “Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials,” The Lancet, vol. 370, no. 9600, pp. 1706–1713, 2007. View at Publisher · View at Google Scholar · View at PubMed
  91. L. M. Beckman, T. R. Beckman, and C. P. Earthman, “Changes in gastrointestinal hormones and leptin after Roux-en-Y gastric bypass procedure: a review,” Journal of the American Dietetic Association, vol. 110, no. 4, pp. 571–584, 2010. View at Publisher · View at Google Scholar · View at PubMed
  92. N. Rasmusen, On Speed: The Many Lives of Amphetamine, NYU Press, New York, NY, USA, 2009.
  93. H. M. Connolly, J. L. Crary, M. D. McGoon et al., “Valvular heart disease associated with fenfluramine phentermine,” The New England Journal of Medicine, vol. 337, no. 9, pp. 581–588, 1997. View at Publisher · View at Google Scholar · View at PubMed
  94. B. Sears, The Zone, Regan Books, New York, NY, USA, 1995.
  95. B. Sears, “Anti-inflammatory diets for obesity and diabetes,” Journal of the American College of Nutrition, vol. 28, no. 1, supplement 1, pp. 482S–491S, 2009.
  96. J. D. Ramakers, R. P. Mensink, G. Schaart, and J. Plat, “Arachidonic acid but not eicosapentaenoic acid (EPA) and oleic acid activates NF-κB and elevates ICAM-1 expression in Caco-2 cells,” Lipids, vol. 42, no. 8, pp. 687–698, 2007. View at Publisher · View at Google Scholar · View at PubMed
  97. J. Y. Lee, J. Ye, Z. Gao et al., “Reciprocal modulation of toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids,” Journal of Biological Chemistry, vol. 278, no. 39, pp. 37041–37051, 2003. View at Publisher · View at Google Scholar · View at PubMed
  98. J. Y. Lee, L. Zhao, H. S. Youn et al., “Saturated fatty acid activates but polyunsaturated fatty acid inhibits toll-like receptor 2 dimerized with Toll-like receptor 6 or 1,” Journal of Biological Chemistry, vol. 279, no. 17, pp. 16971–16979, 2004. View at Publisher · View at Google Scholar · View at PubMed
  99. T. Suganami, K. Tanimoto-Koyama, J. Nishida et al., “Role of the Toll-like receptor 4/NF-κB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 1, pp. 84–91, 2007. View at Publisher · View at Google Scholar · View at PubMed
  100. A. Kennedy, K. Martinez, C.-C. Chuang, K. Lapoint, and M. Mcintosh, “Saturated fatty acid-mediated inflammation and insulin resistance in adipose tissue: mechanisms of action and implications,” Journal of Nutrition, vol. 139, no. 1, pp. 1–4, 2009. View at Publisher · View at Google Scholar · View at PubMed
  101. H. Shi, M. V. Kokoeva, K. Inouye, I. Tzameli, H. Yin, and J. S. Flier, “TLR4 links innate immunity and fatty acid-induced insulin resistance,” Journal of Clinical Investigation, vol. 116, no. 11, pp. 3015–3025, 2006. View at Publisher · View at Google Scholar · View at PubMed
  102. F. Kim, M. Pham, I. Luttrell et al., “Toll-like receptor-4 mediates vascular inflammation and insulin resistance in diet-induced obesity,” Circulation Research, vol. 100, no. 11, pp. 1589–1596, 2007. View at Publisher · View at Google Scholar · View at PubMed
  103. X. Zhang, G. Zhang, H. Zhang, M. Karin, H. Bai, and D. Cai, “Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity,” Cell, vol. 135, no. 1, pp. 61–73, 2008. View at Publisher · View at Google Scholar · View at PubMed
  104. A. Denys, A. Hichami, and N. A. Khan, “n-3 PUFAs modulate T-cell activation via protein kinase C-α and -ε and the NF-κB signaling pathway,” Journal of Lipid Research, vol. 46, no. 4, pp. 752–758, 2005. View at Publisher · View at Google Scholar · View at PubMed
  105. B. Romier, J. Van De Walle, A. During, Y. Larondelle, and Y. -J. Schneider, “Modulation of signalling nuclear factor-κB activation pathway by polyphenols in human intestinal Caco-2 cells,” British Journal of Nutrition, vol. 100, no. 3, pp. 542–551, 2008. View at Publisher · View at Google Scholar · View at PubMed
  106. J. Y. Lee, A. Plakidas, W. H. Lee et al., “Differential modulation of Toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids,” Journal of Lipid Research, vol. 44, no. 3, pp. 479–486, 2003. View at Publisher · View at Google Scholar · View at PubMed
  107. C. von Schacky, “A review of omega-3 ethyl esters for cardiovascular prevention and treatment of increased blood triglyceride levels,” Vascular Health and Risk Management, vol. 2, no. 3, pp. 251–262, 2006. View at Publisher · View at Google Scholar
  108. H. Li, X. Z. Ruan, S. H. Powis et al., “EPA and DHA reduce LPS-induced inflammation responses in HK-2 cells: evidence for a PPAR-γ-dependent mechanism,” Kidney International, vol. 67, no. 3, pp. 867–874, 2005. View at Publisher · View at Google Scholar · View at PubMed
  109. R. U. Pliquett, D. Führer, S. Falk, S. Zysset, D. Y. Von Cramon, and M. Stumvoll, “The effects of insulin on the central nervous system—focus on appetite regulation,” Hormone and Metabolic Research, vol. 38, no. 7, pp. 442–446, 2006. View at Publisher · View at Google Scholar · View at PubMed
  110. H. Davidowa and A. Plagemann, “Insulin resistance of hypothalamic arcuate neurons in neonatally overfed rats,” NeuroReport, vol. 18, no. 5, pp. 521–524, 2007. View at Publisher · View at Google Scholar · View at PubMed
  111. M. W. Schwartz and D. Porte Jr., “Diabetes, obesity, and the brain,” Science, vol. 307, no. 5708, pp. 375–379, 2005. View at Publisher · View at Google Scholar · View at PubMed
  112. P. J. Scarpace and Y. Zhang, “Leptin resistance: a prediposing factor for diet-induced obesity,” American Journal of Physiology, vol. 296, no. 3, pp. R493–R500, 2009. View at Publisher · View at Google Scholar · View at PubMed
  113. S. S. Martin, A. Qasim, and M. P. Reilly, “Leptin resistance: a possible interface of inflammation and metabolism in obesity-related cardiovascular disease,” Journal of the American College of Cardiology, vol. 52, no. 15, pp. 1201–1210, 2008. View at Publisher · View at Google Scholar · View at PubMed
  114. S. I. Rapoport, “Arachidonic acid and the brain,” Journal of Nutrition, vol. 138, no. 12, pp. 2515–2520, 2008.
  115. S. Watanabe, M. Doshi, and T. Hamazaki, “n-3 polyunsaturated fatty acid (PUFA) deficiency elevates and n-3 PUFA enrichment reduces brain 2-arachidonoylglycerol level in mice,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 69, no. 1, pp. 51–59, 2003. View at Publisher · View at Google Scholar
  116. C. T. Chen, Z. Liu, M. Ouellet, F. Calon, and R. P. Bazinet, “Rapid β-oxidation of eicosapentaenoic acid in mouse brain: an in situ study,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 80, no. 2-3, pp. 157–163, 2009. View at Publisher · View at Google Scholar · View at PubMed
  117. R. L. Batterham, H. Heffron, S. Kapoor et al., “Critical role for peptide YY in protein-mediated satiation and body-weight regulation,” Cell Metabolism, vol. 4, no. 3, pp. 223–233, 2006. View at Publisher · View at Google Scholar · View at PubMed
  118. S. Chalon, “Omega-3 fatty acids and monoamine neurotransmission,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 75, no. 4-5, pp. 259–269, 2006. View at Publisher · View at Google Scholar · View at PubMed
  119. P. J. Sorgi, E. M. Hallowell, H. L. Hutchins, and B. Sears, “Effects of an open-label pilot study with high-dose EPA/DHA concentrates on plasma phospholipids and behavior in children with attention deficit hyperactivity disorder,” Nutrition Journal, vol. 6, article 16, 2007. View at Publisher · View at Google Scholar · View at PubMed
  120. M. Germano, D. Meleleo, G. Montorfano et al., “Plasma, red blood cells phospholipids and clinical evaluation after long chain omega-3 supplementation in children with attention defict hyperactivity disorder (ADHD),” Nutritional Neuroscience, vol. 10, no. 1-2, pp. 1–9, 2007. View at Publisher · View at Google Scholar
  121. J.-T. Hwang, D. Y. Kwon, and S. H. Yoon, “AMP-activated protein kinase: a potential target for the diseases prevention by natural occurring polyphenols,” New Biotechnology, vol. 26, no. 1-2, pp. 17–22, 2009. View at Publisher · View at Google Scholar · View at PubMed
  122. M. Zang, S. Xu, K. A. Maitland-Toolan et al., “Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice,” Diabetes, vol. 55, no. 8, pp. 2180–2191, 2006. View at Publisher · View at Google Scholar · View at PubMed
  123. M. Takikawa, S. Inoue, F. Horio, and T. Tsuda, “Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of amp-activated protein kinase in diabetic mice,” Journal of Nutrition, vol. 140, no. 3, pp. 527–533, 2010. View at Publisher · View at Google Scholar · View at PubMed
  124. C. S. Johnston, C. S. Day, and P. D. Swan, “Postprandial thermogenesis is increased 100% on a high-protein, low-fat diet versus a high-carbohydrate, low-fat diet in healthy, young women,” Journal of the American College of Nutrition, vol. 21, no. 1, pp. 55–61, 2002.
  125. D. K. Layman and J. I. Baum, “Dietary protein impact on glycemic control during weight loss,” Journal of Nutrition, vol. 134, no. 4, pp. 968S–973S, 2004.
  126. L. E. Norton, D. K. Layman, P. Bunpo, T. G. Anthony, D. V. Brana, and P. J. Garlick, “The leucine content of a complete meal directs peak activation but not duration of skeletal muscle protein synthesis and mammalian target of rapamycin signaling in rats,” Journal of Nutrition, vol. 139, no. 6, pp. 1103–1109, 2009. View at Publisher · View at Google Scholar · View at PubMed
  127. D. K. Layman, “Dietary guidelines should reflect new understandings about adult protein needs,” Nutrition and Metabolism, vol. 6, article 12, 2009. View at Publisher · View at Google Scholar · View at PubMed
  128. Institute of Medicine of the National Academies, Dietary Reference Intake for Energy, Carbohydrates, Fat, Fiber, Fatty Acids, Cholesterol, Protein, and Amino Acids, National Academies Press, Washington, DC, USA, 2002.
  129. F. M. Sacks, G. A. Bray, V. J. Carey et al., “Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates,” The New England Journal of Medicine, vol. 360, no. 9, pp. 859–873, 2009. View at Publisher · View at Google Scholar · View at PubMed
  130. C. D. Gardner, A. Kiazand, S. Alhassan et al., “Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: the A to Z weight loss study: a randomized trial,” Journal of the American Medical Association, vol. 297, no. 9, pp. 969–977, 2007. View at Publisher · View at Google Scholar · View at PubMed
  131. M. L. Dansinger, J. A. Gleason, J. L. Griffith, H. P. Selker, and E. J. Schaefer, “Comparison of the Atkins, Ornish, Weight Watchers, and Zone Diets for weight loss and heart disease risk reduction: a randomized trial,” Journal of the American Medical Association, vol. 293, no. 1, pp. 43–53, 2005. View at Publisher · View at Google Scholar · View at PubMed
  132. D. K. Layman, “The role of leucine in weight loss diets and glucose homeostasis,” Journal of Nutrition, vol. 133, no. 1, pp. 261S–267S, 2003.
  133. S. K. Raatz, C. J. Torkelson, J. B. Redmon et al., “Reduced glycemic index and glycemic load diets do not increase the effects of energy restriction on weight loss and insulin sensitivity in obese men and women,” Journal of Nutrition, vol. 135, no. 10, pp. 2387–2391, 2005.
  134. C. B. Ebbeling, M. M. Leidig, H. A. Feldman, M. M. Lovesky, and D. S. Ludwig, “Effects of a low-glycemic load vs low-fat diet in obese young adults: a randomized trial,” Journal of the American Medical Association, vol. 297, no. 19, pp. 2092–2102, 2007. View at Publisher · View at Google Scholar · View at PubMed
  135. A. G. Pittas, S. B. Roberts, S. K. Das et al., “The effects of the dietary glycemic load on type 2 diabetes risk factors during weight loss,” Obesity, vol. 14, no. 12, pp. 2200–2209, 2006.
  136. A. G. Pittas, S. K. Das, C. L. Hajduk et al., “A low-glycemic load diet facilitates greater weight loss in overweight adults with high insulin secretion but not in overweight adults with low insulin secretion in the CALERIE trial,” Diabetes Care, vol. 28, no. 12, pp. 2939–2941, 2005. View at Publisher · View at Google Scholar
  137. M. A. Pereira, J. Swain, A. B. Goldfine, N. Rifai, and D. S. Ludwig, “Effects of a low-glycemic load diet on resting energy expenditure and heart disease risk factors during weight loss,” Journal of the American Medical Association, vol. 292, no. 20, pp. 2482–2490, 2004. View at Publisher · View at Google Scholar · View at PubMed
  138. Joslin Diabetes Research Center Dietary Guidelines, http://www.joslin.org/docs/nutrition_guideline_graded.pdf.
  139. O. Hamdy and C. Carver, “The why WAIT program: improving clinical outcomes through weight management in type 2 diabetes,” Current Diabetes Reports, vol. 8, no. 5, pp. 413–420, 2008. View at Publisher · View at Google Scholar
  140. B. Sears, Mastering the Zone, Regan Books, New York, NY, USA, 1997.
  141. R. R. Wing and S. Phelan, “Long-term weight loss maintenance,” The American Journal of Clinical Nutrition, vol. 82, no. 1, supplement, pp. 222S–225S, 2005.
  142. R. R. Wing and J. O. Hill, “Successful weight loss maintenance,” Annual Review of Nutrition, vol. 21, pp. 323–341, 2001. View at Publisher · View at Google Scholar · View at PubMed