About this Journal Submit a Manuscript Table of Contents
Journal of Obesity
Volume 2011 (2011), Article ID 490650, 15 pages
http://dx.doi.org/10.1155/2011/490650
Review Article

Different Adipose Depots: Their Role in the Development of Metabolic Syndrome and Mitochondrial Response to Hypolipidemic Agents

1Institute of Medicine, University of Bergen, N 5021 Bergen, Norway
2Department of Heart Disease, Haukeland University Hospital, N 5021 Bergen, Norway

Received 4 August 2010; Accepted 27 December 2010

Academic Editor: S. B. Heymsfield

Copyright © 2011 Bodil Bjørndal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Muoio and C. B. Newgard, “Obesity-related derangements in metabolic regulation,” Annual Review of Biochemistry, vol. 75, pp. 367–401, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. J. K. Sethi and A. J. Vidal-Puig, “Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation,” Journal of Lipid Research, vol. 48, no. 6, pp. 1253–1262, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. G. Frühbeck, “Overview of adipose tissue and its role in obesity and metabolic disorders,” Methods in Molecular Biology, vol. 456, pp. 1–22, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. L. A. Adams, J. F. Lymp, J. St Sauver et al., “The natural history of nonalcoholic fatty liver disease: a population-based cohort study,” Gastroenterology, vol. 129, no. 1, pp. 113–121, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Puddu, G. M. Puddu, E. Cravero, S. de Pascalis, and A. Muscari, “The emerging role of cardiovascular risk factor-induced mitochondrial dysfunction in atherogenesis,” Journal of Biomedical Science, vol. 16, pp. 112–120, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. D. A. Gutierrez, M. J. Puglisi, and A. H. Hasty, “Impact of increased adipose tissue mass on inflammation, insulin resistance, and dyslipidemia,” Current Diabetes Reports, vol. 9, no. 1, pp. 26–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Engfeldt and P. Arner, “Lipolysis in human adipocytes, effects of cell size, age and of regional differences,” Hormone and Metabolic Research. Supplement, vol. 19, pp. 26–29, 1988. View at Scopus
  8. S. E. McQuaid, L. Hodson, M. J. Neville, et al., “Down-regulation of adipose tissue fatty acid trafficking in obesity: a driver for ectopic fat deposition?” Diabetes, vol. 60, no. 1, pp. 47–55, 2011.
  9. S. Lenzen, J. Drinkgern, and M. Tiedge, “Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues,” Free Radical Biology and Medicine, vol. 20, no. 3, pp. 463–466, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. B. B. Lowell and G. I. Shulman, “Mitochondrial dysfunction and type 2 diabetes,” Science, vol. 307, no. 5708, pp. 384–387, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. J. A. Maassen, “Mitochondria, body fat and type 2 diabetes: what is the connection?” Minerva Medica, vol. 99, no. 3, pp. 241–251, 2008. View at Scopus
  12. I. Talior, M. Yarkoni, N. Bashan, and H. Eldar-Finkelman, “Increased glucose uptake promotes oxidative stress and PKC-δ activation in adipocytes of obese, insulin-resistant mice,” American Journal of Physiology, vol. 285, no. 2, pp. E295–E302, 2003. View at Scopus
  13. S. Furukawa, T. Fujita, M. Shimabukuro et al., “Increased oxidative stress in obesity and its impact on metabolic syndrome,” The Journal of Clinical Investigation, vol. 114, no. 12, pp. 1752–1761, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. J. M. Curtis, P. A. Grimsrud, W. S. Wright et al., “Downregulation of adipose glutathione S-tansferase A4 leads to increased protein carbonylation, oxidative stress, and mitochondrial dysfunction,” Diabetes, vol. 59, no. 5, pp. 1132–1142, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. J. St-Pierre, J. A. Buckingham, S. J. Roebuck, and M. D. Brand, “Topology of superoxide production from different sites in the mitochondrial electron transport chain,” The Journal of Biological Chemistry, vol. 277, no. 47, pp. 44784–44790, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. E. J. Anderson, M. E. Lustig, K. E. Boyle et al., “Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans,” The Journal of Clinical Investigation, vol. 119, no. 3, pp. 573–581, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. N. Houstis, E. D. Rosen, and E. S. Lander, “Reactive oxygen species have a causal role in multiple forms of insulin resistance,” Nature, vol. 440, no. 7086, pp. 944–948, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. K. Bedard and K. H. Krause, “The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology,” Physiological Reviews, vol. 87, no. 1, pp. 245–313, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. C. Guichard, R. Moreau, D. Pessayre, T. K. Epperson, and K. H. Krause, “NOX family NADPH oxidases in liver and in pancreatic islets: a role in the metabolic syndrome and diabetes?” Biochemical Society Transactions, vol. 36, no. 5, pp. 920–929, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. L. Wilson-Fritch, A. Burkart, G. Bell et al., “Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone,” Molecular and Cellular Biology, vol. 23, no. 3, pp. 1085–1094, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. B. J. Goldstein, M. Kalyankar, and X. Wu, “Redox paradox: insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets,” Diabetes, vol. 54, no. 2, pp. 311–321, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Carrière, Y. Fernandez, M. Rigoulet, L. Pénicaud, and L. Casteilla, “Inhibition of preadipocyte proliferation by mitochondrial reactive oxygen species,” FEBS Letters, vol. 550, no. 1-3, pp. 163–167, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Carrière, M. C. Carmona, Y. Fernandez et al., “Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD153 and adipocyte differentiation: a mechanism for hypoxia-dependent effect,” The Journal of Biological Chemistry, vol. 279, no. 39, pp. 40462–40469, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. M. M. Rogge, “The role of impaired mitochondrial lipid oxidation in obesity,” Biological Research for Nursing, vol. 10, no. 4, pp. 356–373, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. K. Højlund, M. Mogensen, K. Sahlin, and H. Beck-Nielsen, “Mitochondrial dysfunction in type 2 diabetes and obesity,” Endocrinology and Metabolism Clinics of North America, vol. 37, no. 3, pp. 713–731, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. M. Gaster, A. C. Rustan, V. Aas, and H. Beck-Nielsen, “Reduced lipid oxidation in skeletal muscle from type 2 diabetic subjects may be of genetic origin: evidence from cultured myotubes,” Diabetes, vol. 53, no. 3, pp. 542–548, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. E. E. Blaak, “Metabolic fluxes in skeletal muscle in relation to obesity and insulin resistance,” Best Practice and Research: Clinical Endocrinology and Metabolism, vol. 19, no. 3, pp. 391–403, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. D. E. Kelley, “Skeletal muscle fat oxidation: timing and flexibility are everything,” The Journal of Clinical Investigation, vol. 115, no. 7, pp. 1699–1702, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. B. Ukropcova, M. McNeil, O. Sereda et al., “Dynamic changes in fat oxidation in human primary myocytes mirror metabolic characteristics of the donor,” The Journal of Clinical Investigation, vol. 115, no. 7, pp. 1934–1941, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. M. E. Patti, A. J. Butte, S. Crunkhorn et al., “Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 14, pp. 8466–8471, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. K. F. Petersen, S. Dufour, D. Befroy, R. Garcia, and G. I. Shulman, “Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes,” The New England Journal of Medicine, vol. 350, no. 7, pp. 664–671, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. S. Franckhauser, S. Muñoz, A. Pujol et al., “Increased fatty acid re-esterification by PEPCK overexpression in adipose tissue leads to obesity without insulin resistance,” Diabetes, vol. 51, no. 3, pp. 624–630, 2002. View at Scopus
  33. Y. Olswang, H. Cohen, O. Papo et al., “A mutation in the peroxisome proliferator-activated receptor γ-binding site in the gene for the cytosolic form of phosphoenolpyruvate carboxykinase reduces adipose tissue size and fat content in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 2, pp. 625–630, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. G. Fassina, P. Dorigo, and R. M. Gaion, “Equilibrium between metabolic pathways producing energy: a key factor in regulating lipolysis,” Pharmacological Research Communications, vol. 6, no. 1, pp. 1–21, 1974. View at Scopus
  35. M. Daval, F. Diot-Dupuy, R. Bazin et al., “Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes,” The Journal of Biological Chemistry, vol. 280, no. 26, pp. 25250–25257, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. L. Wilson-Fritch, S. Nicoloro, M. Chouinard et al., “Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone,” The Journal of Clinical Investigation, vol. 114, no. 9, pp. 1281–1289, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. C. Deveaud, B. Beauvoit, B. Salin, J. Schaeffer, and M. Rigoulet, “Regional differences in oxidative capacity of rat white adipose tissue are linked to the mitochondrial content of mature adipocytes,” Molecular and Cellular Biochemistry, vol. 267, no. 1-2, pp. 157–166, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Kraunsoe, R. Boushel, C. N. Hansen et al., “Mitochondrial respiration in subcutaneous and visceral adipose tissue from patients with morbid obesity,” Journal of Physiology, vol. 588, no. 12, pp. 2023–2032, 2010. View at Publisher · View at Google Scholar · View at PubMed
  39. I. Bogacka, H. Xie, G. A. Bray, and S. R. Smith, “Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo,” Diabetes, vol. 54, no. 5, pp. 1392–1399, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Kaaman, L. M. Sparks, V. van Harmelen et al., “Strong association between mitochondrial DNA copy number and lipogenesis in human white adipose tissue,” Diabetologia, vol. 50, no. 12, pp. 2526–2533, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. K. F. Petersen, D. Befroy, S. Dufour et al., “Mitochondrial dysfunction in the elderly: possible role in insulin resistance,” Science, vol. 300, no. 5622, pp. 1140–1142, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. D. Pessayre, B. Fromenty, and A. Mansouri, “Mitochondrial injury in steatohepatitis,” European Journal of Gastroenterology and Hepatology, vol. 16, no. 11, pp. 1095–1105, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. J. X. Rong, Y. Qiu, M. K. Hansen et al., “Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone,” Diabetes, vol. 56, no. 7, pp. 1751–1760, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. W. D. van Marken Lichtenbelt, J. W. Vanhommerig, N. M. Smulders et al., “Cold-activated brown adipose tissue in healthy men,” The New England Journal of Medicine, vol. 360, no. 15, pp. 1500–1508, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. K. A. Virtanen, M. E. Lidell, J. Orava et al., “Functional brown adipose tissue in healthy adults,” The New England Journal of Medicine, vol. 360, no. 15, pp. 1518–1525, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. P. Seale, B. Bjork, W. Yang et al., “PRDM16 controls a brown fat/skeletal muscle switch,” Nature, vol. 454, no. 7207, pp. 961–967, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. M. Bamshad, C. K. Song, and T. J. Bartness, “CNS origins of the sympathetic nervous system outflow to brown adipose tissue,” American Journal of Physiology, vol. 276, no. 6, pp. R1569–R1578, 1999. View at Scopus
  48. M. P. Mattson, “Perspective: does brown fat protect against diseases of aging?” Ageing Research Reviews, vol. 9, no. 1, pp. 69–76, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. J. B. Hansen and K. Kristiansen, “Regulatory circuits controlling white versus brown adipocyte differentiation,” Biochemical Journal, vol. 398, no. 2, pp. 153–168, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. J. Kopecky, G. Clarke, S. Enerbäck, B. Spiegelman, and L. P. Kozak, “Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity,” The Journal of Clinical Investigation, vol. 96, no. 6, pp. 2914–2923, 1995. View at Scopus
  51. J. Kopecky, Z. Hodny, M. Rossmeisl, I. Syrovy, and L. P. Kozak, “Reduction of dietary obesity in aP2-Ucp transgenic mice: physiology and adipose tissue distribution,” American Journal of Physiology, vol. 270, no. 5, part 1, pp. E768–E775, 1996. View at Scopus
  52. A. J. Guri, R. Hontecillas, and J. Bassaganya-Riera, “Peroxisome proliferator-activated receptors: bridging metabolic syndrome with molecular nutrition,” Clinical Nutrition, vol. 25, no. 6, pp. 871–885, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. P. F. Finn and J. F. Dice, “Proteolytic and lipolytic responses to starvation,” Nutrition, vol. 22, no. 7-8, pp. 830–844, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. E. D. Rosen and B. M. Spiegelman, “PPARγ: a nuclear regulator of metabolism, differentiation, and cell growth,” The Journal of Biological Chemistry, vol. 276, no. 41, pp. 37731–37734, 2001. View at Scopus
  55. Y. Gosmain, N. Dif, V. Berbe et al., “Regulation of SREBP-1 expression and transcriptional action on HKII and FAS genes during fasting and refeeding in rat tissues,” Journal of Lipid Research, vol. 46, no. 4, pp. 697–705, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. K. Boon Yin, N. Najimudin, and T. S. T. Muhammad, “The PPARγ coding region and its role in visceral obesity,” Biochemical and Biophysical Research Communications, vol. 371, no. 2, pp. 177–179, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. Z. Wu, Y. Xie, R. F. Morrison, N. L. R. Bucher, and S. R. Farmer, “PPARγ induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPα during the conversion of 3T3 fibroblasts into adipocytes,” The Journal of Clinical Investigation, vol. 101, no. 1, pp. 22–32, 1998. View at Scopus
  58. L. M. Cagen, X. Deng, H. G. Wilcox, E. A. Park, R. Raghow, and M. B. Elam, “Insulin activates the rat sterol-regulatory-element-binding protein 1c (SREBP-1c) promoter through the combinatorial actions of SREBP, LXR, Sp-1 and NF-Y cis-acting elements,” Biochemical Journal, vol. 385, no. 1, pp. 207–216, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. J. B. Kim, H. M. Wright, M. Wright, and B. M. Spiegelman, “ADD1/SREBP1 activates PPARγ through the production of endogenous ligand,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 8, pp. 4333–4337, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Fajas, K. Schoonjans, L. Gelman et al., “Regulation of peroxisome proliferator-activated receptor γ expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism,” Molecular and Cellular Biology, vol. 19, no. 8, pp. 5495–5503, 1999. View at Scopus
  61. E. H. Koh, J. Y. Park, H. S. Park et al., “Essential role of mitochondrial function in adiponectin synthesis in adipocytes,” Diabetes, vol. 56, no. 12, pp. 2973–2981, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. B. L. Wajchenberg, “Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome,” Endocrine Reviews, vol. 21, no. 6, pp. 697–738, 2000. View at Publisher · View at Google Scholar · View at Scopus
  63. L. Casteilla, L. Pénicaud, B. Cousin, and D. Calise, “Choosing an adipose tissue depot for sampling. Factors in selection and depot specificity,” Methods in Molecular Biology, vol. 456, pp. 23–38, 2008. View at Scopus
  64. B. Chowdhury, L. Sjostrom, M. Alpsten, J. Kostanty, H. Kvist, and R. Lofgren, “A multicompartment body composition technique based on computerized tomography,” International Journal of Obesity, vol. 18, no. 4, pp. 219–234, 1994.
  65. J. Hoffstedt, P. Arner, G. Hellers, and F. Lönnqvist, “Variation in adrenergic regulation of lipolysis between omental and subcutaneous adipocytes from obese and non-obese men,” Journal of Lipid Research, vol. 38, no. 4, pp. 795–804, 1997. View at Scopus
  66. G. R. Hajer, T. W. van Haeften, and F. L. J. Visseren, “Adipose tissue dysfunction in obesity, diabetes, and vascular diseases,” European Heart Journal, vol. 29, no. 24, pp. 2959–2971, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. Y. K. Yang, M. Chen, R. H. Clements, G. A. Abrams, C. J. Aprahamian, and C. M. Harmon, “Human mesenteric adipose tissue plays unique role versus subcutaneous and omental fat in obesity related diabetes,” Cellular Physiology and Biochemistry, vol. 22, no. 5-6, pp. 531–538, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. D. Sramkova, S. Krejbichova, J. Vcelak et al., “The UCP1 gene polymorphism A-3826G in relation to DM2 and body composition in Czech population,” Experimental and Clinical Endocrinology and Diabetes, vol. 115, no. 5, pp. 303–307, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. P. Arner, L. Hellstrom, H. Wahrenberg, and M. Bronnegard, “Beta-adrenoceptor expression in human fat cells from different regions,” The Journal of Clinical Investigation, vol. 86, no. 5, pp. 1595–1600, 1990. View at Scopus
  70. K. A. Virtanen, P. Lönnroth, R. Parkkola et al., “Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 8, pp. 3902–3910, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. A. J. Vidal-Puig, R. V. Considine, M. Jimenez-Liñan et al., “Peroxisome proliferator-activated receptor gene expression in human tissues: effects of obesity, weight loss, and regulation by insulin and glucocorticoids,” The Journal of Clinical Investigation, vol. 99, no. 10, pp. 2416–2422, 1997. View at Scopus
  72. S. C. Jamdar, “Glycerolipid biosynthesis in rat adipose tissue. Influence of adipose-cell size and site of adipose tissue on triacylglycerol formation in lean and obese rats,” Biochemical Journal, vol. 170, no. 1, pp. 153–160, 1978. View at Scopus
  73. M. Palou, T. Priego, J. Sánchez, A. M. Rodríguez, A. Palou, and C. Picó, “Gene expression patterns in visceral and subcutaneous adipose depots in rats are linked to their morphologic features,” Cellular Physiology and Biochemistry, vol. 24, no. 5-6, pp. 547–556, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. M. Palou, J. Sánchez, T. Priego, A. M. Rodríguez, C. Picó, and A. Palou, “Regional differences in the expression of genes involved in lipid metabolism in adipose tissue in response to short- and medium-term fasting and refeeding,” Journal of Nutritional Biochemistry, vol. 21, no. 1, pp. 23–33, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. K. Frayn, “Adipose tissue as a buffer for daily lipid flux,” Diabetologia, vol. 45, no. 9, pp. 1201–1210, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. D. E. Kelley, F. L. Thaete, F. Troost, T. Huwe, and B. H. Goodpaster, “Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance,” American Journal of Physiology, vol. 278, no. 5, pp. E941–E948, 2000. View at Scopus
  77. S. R. Smith, J. C. Lovejoy, F. Greenway et al., “Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity,” Metabolism, vol. 50, no. 4, pp. 425–435, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. Y. Miyazaki, L. Glass, C. Triplitt, E. Wajcberg, L. J. Mandarino, and R. A. DeFronzo, “Abdominal fat distribution and peripheral and hepatic insulin resistance in type 2 diabetes mellitus,” American Journal of Physiology, vol. 283, no. 6, pp. E1135–E1143, 2002. View at Scopus
  79. G. E. Walker, B. Verti, P. Marzullo et al., “Deep subcutaneous adipose tissue: a distinct abdominal adipose depot,” Obesity, vol. 15, no. 8, pp. 1933–1943, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. M. Cnop, M. J. Landchild, J. Vidal et al., “The concurrent accumulation of intra-abdominal and subcutaneous fat explains the association between insulin resistance and plasma leptin concentrations: distinct metabolic effects of two fat compartments,” Diabetes, vol. 51, no. 4, pp. 1005–1015, 2002. View at Scopus
  81. K. Kadowaki, K. Fukino, E. Negishi, and K. Ueno, “Sex differences in PPARγ expressions in rat adipose tissues,” Biological and Pharmaceutical Bulletin, vol. 30, no. 4, pp. 818–820, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. K. N. Manolopoulos, F. Karpe, and K. N. Frayn, “Gluteofemoral body fat as a determinant of metabolic health,” International Journal of Obesity, vol. 34, no. 6, pp. 949–959, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. M. B. Snijder, M. Visser, J. M. Dekker et al., “Low subcutaneous thigh fat is a risk factor for unfavourable glucose and lipid levels, independently of high abdominal fat. The Health ABC Study,” Diabetologia, vol. 48, no. 2, pp. 301–308, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. J. C. Seidell, L. Pérusse, J. P. Després, and C. Bouchard, “Waist and hip circumferences have independent and opposite effects on cardiovascular disease risk factors: the Quebec Family Study,” American Journal of Clinical Nutrition, vol. 74, no. 3, pp. 315–321, 2001. View at Scopus
  85. R. B. Terry, M. L. Stefanick, W. L. Haskell, and P. D. Wood, “Contributions of regional adipose tissue depots to plasma lipoprotein concentrations in overweight men and women: possible protective effects of thigh fat,” Metabolism, vol. 40, no. 7, pp. 733–740, 1991. View at Publisher · View at Google Scholar · View at Scopus
  86. B. Buemann, A. Astrup, O. Pedersen et al., “Possible role of adiponectin and insulin sensitivity in mediating the favorable effects of lower body fat mass on blood lipids,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 5, pp. 1698–1704, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. S. E. McQuaid, S. M. Humphreys, L. Hodson, B. A. Fielding, F. Karpe, and K. N. Frayn, “Femoral adipose tissue may accumulate the fat that has been recycled as VLDL and nonesterified fatty acids,” Diabetes, vol. 59, no. 10, pp. 2465–2473, 2010. View at Publisher · View at Google Scholar · View at PubMed
  88. D. Gallagher, D. E. Kelley, J. E. Yim et al., “Adipose tissue distribution is different in type 2 diabetes,” American Journal of Clinical Nutrition, vol. 89, no. 3, pp. 807–814, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. R. L. Marcus, O. Addison, J. P. Kidde, L. E. Dibble, and P. C. Lastayo, “Skeletal muscle fat infiltration: impact of age, inactivity, and exercise,” Journal of Nutrition, Health and Aging, vol. 14, no. 5, pp. 362–366, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. B. H. Goodpaster, S. Krishnaswami, H. Resnick et al., “Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women,” Diabetes Care, vol. 26, no. 2, pp. 372–379, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Boettcher, J. Machann, N. Stefan et al., “Intermuscular adipose tissue (IMAT): association with other adipose tissue compartments and insulin sensitivity,” Journal of Magnetic Resonance Imaging, vol. 29, no. 6, pp. 1340–1345, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. J. E. Yim, S. Heshka, J. Albu et al., “Intermuscular adipose tissue rivals visceral adipose tissue in independent associations with cardiovascular risk,” International Journal of Obesity, vol. 31, no. 9, pp. 1400–1405, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. J. B. Albu, A. J. Kovera, L. Allen et al., “Independent association of insulin resistance with larger amounts of intermuscular adipose tissue and a greater acute insulin response to glucose in African American than in white nondiabetic women,” American Journal of Clinical Nutrition, vol. 82, no. 6, pp. 1210–1217, 2005. View at Scopus
  94. G. Iacobellis and G. Barbaro, “The double role of epicardial adipose tissue as pro- and anti-inflammatory organ,” Hormone and Metabolic Research, vol. 40, no. 7, pp. 442–445, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. S. W. Rabkin, “Epicardial fat: properties, function and relationship to obesity,” Obesity Reviews, vol. 8, no. 3, pp. 253–261, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. G. Iacobellis and A. M. Sharma, “Epicardial adipose tissue as new cardio-metabolic risk marker and potential therapeutic target in the metabolic syndrome,” Current Pharmaceutical Design, vol. 13, no. 21, pp. 2180–2184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. H. S. Sacks and J. N. Fain, “Human epicardial adipose tissue: a review,” American Heart Journal, vol. 153, no. 6, pp. 907–917, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  98. F. Natale, M. A. Tedesco, R. Mocerino et al., “Visceral adiposity and arterial stiffness: echocardiographic epicardial fat thickness reflects, better than waist circumference, carotid arterial stiffness in a large population of hypertensives,” European Journal of Echocardiography, vol. 10, no. 4, pp. 549–555, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. A. Mazur, M. Ostański, G. Telega, and E. Malecka-Tendera, “Is epicardial fat tissue a marker of metabolic syndrome in obese children?” Atherosclerosis, vol. 211, no. 2, pp. 596–600, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. H. S. Sacks, J. N. Fain, B. Holman et al., “Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: epicardial fat functioning as brown fat,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 9, pp. 3611–3615, 2009. View at Publisher · View at Google Scholar · View at PubMed
  101. E. Rodríguez, J. Ribot, A. M. Rodríguez, and A. Palou, “PPAR-γ2 expression in response to cafeteria diet: gender- and depot-specific effects,” Obesity Research, vol. 12, no. 9, pp. 1455–1463, 2004. View at Scopus
  102. Y. Kontani, Y. Wang, K. Kimura et al., “UCP1 deficiency increases susceptibility to diet-induced obesity with age,” Aging Cell, vol. 4, no. 3, pp. 147–155, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. A. Hamann, J. S. Flier, and B. B. Lowell, “Obesity after genetic ablation of brown adipose tissue,” Zeitschrift für Ernahrungswissenschaft, vol. 37, supplement 1, pp. 1–7, 1998.
  104. Q. X. Xiao, S. M. Williams, B. E. Grayson et al., “Excess weight gain during the early postnatal period is associated with permanent reprogramming of brown adipose tissue adaptive thermogenesis,” Endocrinology, vol. 148, no. 9, pp. 4150–4159, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. S. Kajimura, P. Seale, K. Kubota et al., “Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-β transcriptional complex,” Nature, vol. 460, no. 7259, pp. 1154–1158, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  106. C. Vernochet, S. B. Peres, K. E. Davis et al., “C/EBPα and the corepressors CtBP1 and CtBP2 regulate repression of select visceral white adipose genes during induction of the brown phenotype in white adipocytes by peroxisome proliferator-activated receptor ³ agonists,” Molecular and Cellular Biology, vol. 29, no. 17, pp. 4714–4728, 2009. View at Publisher · View at Google Scholar · View at PubMed
  107. N. Petrovic, I. G. Shabalina, J. A. Timmons, B. Cannon, and J. Nedergaard, “Thermogenically competent nonadrenergic recruitment in brown preadipocytes by a PPARγ agonist,” American Journal of Physiology, vol. 295, no. 2, pp. E287–E296, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  108. M. D. Aleo, G. R. Lundeen, D. K. Blackwell et al., “Mechanism and implications of brown adipose tissue proliferation in rats and monkeys treated with the thiazolidinedione darglitazone, a potent peroxisome proliferator-activated receptor-γ agonist,” Journal of Pharmacology and Experimental Therapeutics, vol. 305, no. 3, pp. 1173–1182, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  109. C. A. Haller and N. L. Benowitz, “Adverse cardiovascular and central nervous system events associated with dietary supplements containing ephedra alkaloids,” The New England Journal of Medicine, vol. 343, no. 25, pp. 1833–1838, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  110. F. Belzung, T. Raclot, and R. Groscolas, “Fish oil n-3 fatty acids selectively limit the hypertrophy of abdominal fat depots in growing rats fed high-fat diets,” American Journal of Physiology, vol. 264, no. 6, pp. R1111–R1118, 1993. View at Scopus
  111. A. C. Rustan, B. E. Hustvedt, and C. A. Drevon, “Dietary supplementation of very long-chain n-3 fatty acids decreases whole body lipid utilization in the rat,” Journal of Lipid Research, vol. 34, no. 8, pp. 1299–1309, 1993. View at Scopus
  112. P. Singer, H. Shapiro, M. Theilla, R. Anbar, J. Singer, and J. Cohen, “Anti-inflammatory properties of omega-3 fatty acids in critical illness: novel mechanisms and an integrative perspective,” Intensive Care Medicine, vol. 34, no. 9, pp. 1580–1592, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  113. J. Ruzickova, M. Rossmeisl, T. Prazak et al., “Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue,” Lipids, vol. 39, no. 12, pp. 1177–1185, 2004. View at Publisher · View at Google Scholar · View at Scopus
  114. P. Flachs, O. Horakova, P. Brauner et al., “Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce β-oxidation in white fat,” Diabetologia, vol. 48, no. 11, pp. 2365–2375, 2005. View at Publisher · View at Google Scholar · View at PubMed
  115. O. Kuda, T. Jelenik, Z. Jilkova et al., “N-3 fatty acids and rosiglitazone improve insulin sensitivity through additive stimulatory effects on muscle glycogen synthesis in mice fed a high-fat diet,” Diabetologia, vol. 52, no. 5, pp. 941–951, 2009. View at Publisher · View at Google Scholar · View at PubMed
  116. P. Flachs, M. Rossmeisl, M. Bryhn, and J. Kopecky, “Cellular and molecular effects of n-3 polyunsaturated fatty acids on adipose tissue biology and metabolism,” Clinical Science, vol. 116, no. 1, pp. 1–16, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  117. A. S. Rossi, Y. B. Lombardo, J. M. Lacorte et al., “Dietary fish oil positively regulates plasma leptin and adiponectin levels in sucrose-fed, insulin-resistant rats,” American Journal of Physiology, vol. 289, no. 2, pp. R486–R494, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  118. S. Neschen, K. Morino, J. C. Rossbacher et al., “Fish oil regulates adiponectin secretion by a peroxisome proliferator-activated receptor-γ-dependent mechanism in mice,” Diabetes, vol. 55, no. 4, pp. 924–928, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. R. K. Berge, K. J. Tronstad, K. Berge et al., “The metabolic syndrome and the hepatic fatty acid drainage hypothesis,” Biochimie, vol. 87, no. 1, pp. 15–20, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  120. E. Dyroy, A. Yndestad, T. Ueland, et al., “Antiinflammatory effects of tetradecylthioacetic acid involve both peroxisome proliferator-activated receptor α-dependent and -independent pathways,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 7, pp. 1364–1369, 2005. View at Publisher · View at Google Scholar · View at PubMed
  121. K. Løvås, T. H. Røst, J. Skorve et al., “Tetradecylthioacetic acid attenuates dyslipidaemia in male patients with type 2 diabetes mellitus, possibly by dual PPAR-α/δ activation and increased mitochondrial fatty acid oxidation,” Diabetes, Obesity and Metabolism, vol. 11, no. 4, pp. 304–314, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  122. L. Madsen, M. Guerre-Millo, E. N. Flindt et al., “Tetradecylthioacetic acid prevents high fat diet induced adiposity and insulin resistance,” Journal of Lipid Research, vol. 43, no. 5, pp. 742–750, 2002. View at Scopus
  123. A. J. Wensaas, A. C. Rustan, M. H. Rokling-Andersen et al., “Dietary supplementation of tetradecylthioacetic acid increases feed intake but reduces body weight gain and adipose depot sizes in rats fed on high-fat diets,” Diabetes, Obesity and Metabolism, vol. 11, no. 11, pp. 1034–1049, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  124. M. H. Rokling-Andersen, A. C. Rustan, A. J. Wensaas et al., “Marine n-3 fatty acids promote size reduction of visceral adipose depots, without altering body weight and composition, in male Wistar rats fed a high-fat diet,” British Journal of Nutrition, vol. 102, no. 7, pp. 995–1006, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  125. B. M. Spiegelman, “Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators,” Novartis Foundation Symposium, vol. 287, pp. 60–63, 2007.
  126. R. K. Semple, V. C. Crowley, C. P. Sewter et al., “Expression of the thermogenic nuclear hormone receptor coactivator PGC-1α is reduced in the adipose tissue of morbidly obese subjects,” International Journal of Obesity, vol. 28, no. 1, pp. 176–179, 2004. View at Publisher · View at Google Scholar · View at PubMed
  127. L. Madsen, L. Frøyland, H. J. Grav, and R. K. Berge, “Up-regulated Δ9-desaturase gene expression by hypolipidemic peroxisome-proliferating fatty acids results in increased oleic acid content in liver and VLDL: accumulation of a Δ9-desaturated metabolite of tetradecylthioacetic acid,” Journal of Lipid Research, vol. 38, no. 3, pp. 554–563, 1997. View at Scopus
  128. J. Fredriksen, T. Ueland, E. Dyrøy et al., “Lipid-lowering and anti-inflammatory effects of tetradecylthioacetic acid in HIV-infected patients on highly active antiretroviral therapy,” European Journal of Clinical Investigation, vol. 34, no. 10, pp. 709–715, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  129. P. Hallgren, S. Korsback, and L. Sjostrom, “Measurements of adipose tissue respiration in a closed chamber using an oxygen sensor: methodological considerations,” Journal of Lipid Research, vol. 27, no. 9, pp. 996–1005, 1986. View at Scopus
  130. B. Cannon and J. Nedergaard, “Studies of thermogenesis and mitochondrial function in adipose tissues,” Methods in Molecular Biology, vol. 456, pp. 109–121, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  131. Y. Mori, Y. Murakawa, K. Okada et al., “Effect of troglitazone on body fat distribution in type 2 diabetic patients,” Diabetes Care, vol. 22, no. 6, pp. 908–912, 1999. View at Publisher · View at Google Scholar · View at Scopus
  132. E. Chaput, R. Saladin, M. Silvestre, and A. D. Edgar, “Fenofibrate and rosiglitazone lower serum triglycerides with opposing effects on body weight,” Biochemical and Biophysical Research Communications, vol. 271, no. 2, pp. 445–450, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  133. C. J. de Souza, M. Eckhardt, K. Gagen et al., “Effects of pioglitazone on adipose tissue remodeling within the setting of obesity and insulin resistance,” Diabetes, vol. 50, no. 8, pp. 1863–1871, 2001. View at Scopus
  134. R. Fissoune, N. Pellet, L. Chaabane, F. Contard, D. Guerrier, and A. Briguet, “Evaluation of adipose tissue distribution in obese fa/fa Zucker rats by in vivo MR imaging: effects of peroxisome proliferator-activated receptor agonists,” MAGMA, vol. 17, no. 3–6, pp. 229–235, 2004. View at Publisher · View at Google Scholar · View at PubMed
  135. C. Fernandes-Santos, R. E. Carneiro, L. de Souza Mendonca, M. B. Aguila, and C. A. Mandarim-de-Lacerda, “Pan-PPAR agonist beneficial effects in overweight mice fed a high-fat high-sucrose diet,” Nutrition, vol. 25, no. 7-8, pp. 818–827, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  136. B. M. Forman, J. Chen, and R. M. Evans, “Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 9, pp. 4312–4317, 1997. View at Publisher · View at Google Scholar
  137. E. Raspé, L. Madsen, A. M. Lefebvre et al., “Modulation of rat liver apolipoprotein gene expression and serum lipid levels by tetradecylthioacetic acid (TTA) via PPARα activation,” Journal of Lipid Research, vol. 40, no. 11, pp. 2099–2110, 1999. View at Scopus
  138. M. Westergaard, J. Henningsen, M. L. Svendsen et al., “Modulation of keratinocyte gene expression and differentiation by PPAR-selective ligands and tetradecylthioacetic acid,” Journal of Investigative Dermatology, vol. 116, no. 5, pp. 702–712, 2001. View at Publisher · View at Google Scholar · View at Scopus
  139. A. Lanni, F. P. Mancini, L. Sabatino et al., “De novo expression of uncoupling protein 3 is associated to enhanced mitochondrial thioesterase-1 expression and fatty acid metabolism in liver of fenofibrate-treated rats,” FEBS Letters, vol. 525, no. 1–3, pp. 7–12, 2002. View at Publisher · View at Google Scholar · View at Scopus
  140. H. J. Grav, K. J. Tronstad, O. A. Gudbrandsen et al., “Changed energy state and increased mitochondrial β-oxidation rate in liver of rats associated with lowered proton electrochemical potential and stimulated uncoupling protein 2 (UCP-2) expression. Evidence for peroxisome proliferator-activated receptor-α independent induction of UCP-2 expression,” The Journal of Biological Chemistry, vol. 278, no. 33, pp. 30525–30533, 2003. View at Publisher · View at Google Scholar · View at PubMed
  141. C. Bonnard, A. Durand, S. Peyrol et al., “Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice,” The Journal of Clinical Investigation, vol. 118, no. 2, pp. 789–800, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  142. B. A. Maddux, W. See, J. C. Lawrence Jr., A. L. Goldfine, I. D. Goldfine, and J. L. Evans, “Protection against oxidative stress-induced insulin resistance in rat l6 muscle cells by micromolar concentrations of α-lipoic acid,” Diabetes, vol. 50, no. 2, pp. 404–410, 2001.
  143. J. L. Evans, B. A. Maddux, and I. D. Goldfine, “The molecular basis for oxidative stress-induced insulin resistance,” Antioxidants and Redox Signaling, vol. 7, no. 7-8, pp. 1040–1052, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  144. Z. A. Muna, B. J. Bolann, X. Chen, J. Songstad, and R. K. Berge, “Tetradecylthioacetic acid and tetradecylselenoacetic acid inhibit lipid peroxidation and interact with superoxide radical,” Free Radical Biology and Medicine, vol. 28, no. 7, pp. 1068–1078, 2000. View at Publisher · View at Google Scholar · View at Scopus
  145. Z. A. Muna, O. A. Gudbrandsen, H. Wergedahl, P. Bohov, J. Skorve, and R. K. Berge, “Inhibition of rat lipoprotein oxidation after tetradecylthioacetic acid feeding,” Biochemical Pharmacology, vol. 63, no. 6, pp. 1127–1135, 2002. View at Publisher · View at Google Scholar · View at Scopus
  146. R. K. Berge, J. Skorve, K. J. Tronstad, K. Berge, O. A. Gudbrandsen, and H. Grav, “Metabolic effects of thia fatty acids,” Current Opinion in Lipidology, vol. 13, no. 3, pp. 295–304, 2002. View at Publisher · View at Google Scholar · View at Scopus
  147. K. K. J. Kuiper, Z. A. Muna, K. S. Erga et al., “Tetradecylthioacetic acid reduces stenosis development after balloon angioplasty injury of rabbit iliac arteries,” Atherosclerosis, vol. 158, no. 2, pp. 269–275, 2001. View at Publisher · View at Google Scholar · View at Scopus
  148. H. Glosli, O. A. Gudbrandsen, A. J. Mullen, et al., “Down-regulated expression of PPARα target genes, reduced fatty acid oxidation and altered fatty acid composition in the liver of mice transgenic for hTNFα,” Biochimica et Biophysica Acta, vol. 1734, no. 3, pp. 235–246, 2005. View at Publisher · View at Google Scholar · View at PubMed