About this Journal Submit a Manuscript Table of Contents
Journal of Obesity
Volume 2011 (2011), Article ID 897894, 7 pages
http://dx.doi.org/10.1155/2011/897894
Review Article

Treatment of Obesity-Related Complications with Novel Classes of Naturally Occurring PPAR Agonists

Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

Received 27 April 2010; Revised 25 July 2010; Accepted 2 December 2010

Academic Editor: Luc F. Van Gaal

Copyright © 2011 Josep Bassaganya-Riera et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. D. H. Malnick and H. Knobler, “The medical complications of obesity,” QJM, vol. 99, no. 9, pp. 565–579, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. E. A. Finkelstein, J. G. Trogdon, J. W. Cohen, and W. Dietz, “Annual medical spending attributable to obesity: payer-and service-specific estimates,” Health Affairs, vol. 28, no. 5, pp. w822–w831, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. The United Health Federation, The American Public Health Association, and partnership for prevention, “The future costs of obesity: national and state estimates of the impact of obesity on direct heaalth care expenses,” 2009, http://www.americashealthrankings.org/2009/spotlight.Aspx.
  4. A. H. Mokdad, B. A. Bowman, E. S. Ford, F. Vinicor, J. S. Marks, and J. P. Koplan, “The continuing epidemics of obesity and diabetes in the United States,” Journal of the American Medical Association, vol. 286, no. 10, pp. 1195–1200, 2001. View at Scopus
  5. B. Desvergne and W. Wahli, “Peroxisome proliferator-activated receptors: nuclear control of metabolism,” Endocrine Reviews, vol. 20, no. 5, pp. 649–688, 1999. View at Scopus
  6. R. W. Nesto, D. Bell, and D. Bell, “Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the american heart association and american diabetes association,” Circulation, vol. 108, no. 23, pp. 2941–2948, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. K. Katayama, K. Wada, and K. Wada, “A novel PPARγ gene therapy to control inflammation associated with inflammatory bowel disease in a murine model,” Gastroenterology, vol. 124, no. 5, pp. 1315–1324, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Dubuquoy, E. Å. Jansson, and E. Å. Jansson, “Impaired expression of peroxisome proliferator-activated receptor γin ulcerative colitis,” Gastroenterology, vol. 124, no. 5, pp. 1265–1276, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. D. J. Mangelsdorf, C. Thummel, and C. Thummel, “The nuclear receptor super-family: the second decade,” Cell, vol. 83, no. 6, pp. 835–839, 1995. View at Scopus
  10. J. Bassaganya-Riera, A. Guri, J. King, and R. Hontecillas, “Peroxisome proliferator-activated receptors: the nutritionally controlled molecular networks that integrate inflammation, immunity and metabolism,” Current Nutrition < Food Science, vol. 1, pp. 179–187, 2005.
  11. J. M. Lehmann, L. B. Moore, T. A. Smith-Oliver, W. O. Wilkison, T. M. Willson, and S. A. Kliewer, “An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ),” Journal of Biological Chemistry, vol. 270, no. 22, pp. 12953–12956, 1995. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Bassaganya-Riera, K. Reynolds, and K. Reynolds, “Activation of PPAR γ and δ by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease,” Gastroenterology, vol. 127, no. 3, pp. 777–791, 2004. View at Publisher · View at Google Scholar
  13. J. D. Lewis, A. M. Capra, N. S. Achacoso, A. Ferrara, T. R. Levin, C. P. Quesenberry, and L. A. Habel, “Thiazolidinedione therapy is not associated with increased colonic neoplasia risk in patients with diabetes mellitus,” Gastroenterology, vol. 135, no. 6, pp. 1914–1923.e1, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. N. P. Evans, S. A. Misyak, E. M. Schmelz, A. J. Guri, R. Hontecillas, and J. Bassaganya-Riera, “Conjugated linoleic acid ameliorates inflammation-induced colorectal cancer in mice through activation of PPARγ,” Journal of Nutrition, vol. 140, no. 3, pp. 515–521, 2010. View at Publisher · View at Google Scholar · View at PubMed
  15. S. Ogino, K. Shima, and K. Shima, “Colorectal cancer expression of peroxisome proliferator-activated receptor γ (PPARG, PPARgamma) is associated with good prognosis,” Gastroenterology, vol. 136, no. 4, pp. 1242–1250, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. J. R. Aldridge, C. E. Moseley, and C. E. Moseley, “TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 13, pp. 5306–5311, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. F. Ismail-Beigi, T. Craven, and T. Craven, “Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial,” The Lancet, vol. 376, no. 9739, pp. 419–430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. H. Davidson, A. Armani, J. M. McKenney, and T. A. Jacobson, “Safety considerations with fibrate therapy,” American Journal of Cardiology, vol. 99, no. 6, pp. S3–S18, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. A. J. Guri, R. Hontecillas, and J. Bassaganya-Riera, “Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration,” Clinical Nutrition, vol. 29, no. 6, pp. 824–831, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. A. J. Guri, R. Hontecillas, and J. Bassaganya-Riera, “Abscisic acid synergizes with rosiglitazone to improve glucose tolerance and down-modulate macrophage accumulation in adipose tissue: possible action of the cAMP/PKA/PPAR γ axis,” Clinical Nutrition, vol. 29, no. 5, pp. 646–653, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. A. J. Guri, R. Hontecillas, and R. Hontecillas, “Loss of PPARγ in immune cells impairs the ability of abscisic acid to improve insulin sensitivity by suppressing monocyte chemoattractant protein-1 expression and macrophage infiltration into white adipose tissue,” Journal of Nutritional Biochemistry, vol. 19, no. 4, pp. 216–228, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. A. J. Guri, R. Hontecillas, H. Si, D. Liu, and J. Bassaganya-Riera, “Dietary abscisic acid ameliorates glucose tolerance and obesity-related inflammation in db/db mice fed high-fat diets,” Clinical Nutrition, vol. 26, no. 1, pp. 107–116, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. A. J. Guri, S. A. Misyak, R. Hontecillas, A. Hasty, D. Liu, H. Si, and J. Bassaganya-Riera, “Abscisic acid ameliorates atherosclerosis by suppressing macrophage and CD4+ T cell recruitment into the aortic wall,” Journal of Nutritional Biochemistry, vol. 21, no. 12, pp. 1178–1185, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. J. Bassaganya-Riera, J. Skoneczka, and J. Skoneczka, “Mechanisms of action and medicinal applications of abscisic acid,” Current Medicinal Chemistry, vol. 17, no. 5, pp. 467–478, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Hontecillas, M. O'Shea, A. Einerhand, M. Diguardo, and J. Bassaganya-Riera, “Activation of PPAR γ and α by punicic acid ameliorates glucose tolerance and suppresses obesity-related inflammation,” Journal of the American College of Nutrition, vol. 28, no. 2, pp. 184–195, 2009. View at Scopus
  26. R. Hontecillas, M. Diguardo, E. Duran, M. Orpi, and J. Bassaganya-Riera, “Catalpic acid decreases abdominal fat deposition, improves glucose homeostasis and upregulates PPAR α expression in adipose tissue,” Clinical Nutrition, vol. 27, no. 5, pp. 764–772, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. SN Lewis, J Bassaganya-Riera, and DR. Bevan, “Virtual screening as a technique for ppar modulator discovery,” PPAR Research, vol. 2010, Article ID 861238, 10 pages, 2010. View at Publisher · View at Google Scholar · View at PubMed
  28. B. Alberts, “The breakthroughs of 2009,” Science, vol. 326, no. 5960, p. 1589, 2009. View at Scopus
  29. S. R. Cutler, P. L. Rodriguez, R. R. Finkelstein, and S. R. Abrams, “Abscisic acid: emergence of a core signaling network,” Annual Review of Plant Biology, vol. 61, pp. 651–679, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. S. Bruzzone, I. Moreschi, and I. Moreschi, “Abscisic acid is an endogenous cytokine in human granulocytes with cyclic ADP-ribose as second messenger,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 14, pp. 5759–5764, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. L. Sturla, C. Fresia, and C. Fresia, “LANCL2 is necessary for abscisic acid binding and signaling in human granulocytes and in rat insulinoma cells,” Journal of Biological Chemistry, vol. 284, no. 41, pp. 28045–28057, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. A. J. Guri, R. Hontecillas, and J. Bassaganya-Riera, “Peroxisome proliferator-activated receptors: bridging metabolic syndrome with molecular nutrition,” Clinical Nutrition, vol. 25, no. 6, pp. 871–885, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. J. I. Odegaard, R. R. Ricardo-Gonzalez, and R. R. Ricardo-Gonzalez, “Macrophage-specific PPARγ controls alternative activation and improves insulin resistance,” Nature, vol. 447, no. 7148, pp. 1116–1120, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. A. W. Norris, M. F. Hirshman, and M. F. Hirshman, “Endogenous peroxisome proliferator-activated receptor-γ augments fatty acid uptake in oxidative muscle,” Endocrinology, vol. 149, no. 11, pp. 5374–5383, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. T. Tanaka, H. Masuzaki, and H. Masuzaki, “Transgenic expression of mutant peroxisome proliferator-activated receptor γ in liver precipitates fasting-induced steatosis but protects against high-fat diet-induced steatosis in mice,” Metabolism, vol. 54, no. 11, pp. 1490–1498, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. C. Evans-Molina, R. D. Robbins, and R. D. Robbins, “Peroxisome proliferator-activated receptor γ activation restores islet function in diabetic mice through reduction of endoplasmic reticulum stress and maintenance of euchromatin structure,” Molecular and Cellular Biology, vol. 29, no. 8, pp. 2053–2067, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. P. S. Chaggar, S. M. Shaw, and S. G. Williams, “Review article: thiazolidinediones and heart failure,” Diabetes & Vascular Disease Research, vol. 6, no. 3, pp. 146–152, 2009.
  38. S. P. Weisberg, D. Hunter, and D. Hunter, “CCR2 modulates inflammatory and metabolic effects of high-fat feeding,” Journal of Clinical Investigation, vol. 116, no. 1, pp. 115–124, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. N. Kamei, K. Tobe, and K. Tobe, “Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance,” Journal of Biological Chemistry, vol. 281, no. 36, pp. 26602–26614, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. S. Bruzzone, N. Bodrato, and N. Bodrato, “Abscisic acid is an endogenous stimulator of insulin release from human pancreatic islets with cyclic ADP ribose as second messenger,” Journal of Biological Chemistry, vol. 283, no. 47, pp. 32188–32197, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. G. Lazennec, L. Canaple, D. Saugy, and W. Wahli, “Activation of peroxisome proliferator-activated receptors (PPARs) by their ligands and protein kinase A activators,” Molecular Endocrinology, vol. 14, no. 12, pp. 1962–1975, 2000. View at Publisher · View at Google Scholar
  42. J. Bassaganya-Riera, A. J. Guri, P. Lu, et al., “Abscisic acid regulates inflammation via ligand-binding domain-independent activation of ppar gamma,” Journal of Biological Chemistry. In press.
  43. P. Lu, D. R. Bevan, S. N. Lewis, R. Hontecillas, and J. Bassaganya-Riera, “Molecular modeling of lanthionine synthetase component C-like protein 2: a potential target for the discovery of novel type 2 diabetes prophylactics and therapeutics,” Journal of Molecular Modeling. In press. View at Publisher · View at Google Scholar · View at PubMed
  44. M. Magnone, S. Bruzzone, and S. Bruzzone, “Abscisic acid released by human monocytes activates monocytes and vascular smooth muscle cell responses involved in atherogenesis,” Journal of Biological Chemistry, vol. 284, no. 26, pp. 17808–17818, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. N. Bodrato, L. Franco, and L. Franco, “Abscisic acid activates the murine microglial cell line N9 through the second messenger cyclic ADP-ribose,” Journal of Biological Chemistry, vol. 284, no. 22, pp. 14777–14787, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. A. J. Guri, R. Hontecillas, and J. Bassaganya-Riera, “Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration,” Clinical Nutrition, vol. 29, no. 6, pp. 824–831, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. Y. G. Joh, S. J. Kim, and W. W. Christie, “The structure of the triacylglycerols, containing punicic acid, in the seed oil of Trichosanthes kirilowii,” Journal of the American Oil Chemists' Society, vol. 72, no. 9, pp. 1037–1042, 1995. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Bassaganya-Riera, R. Hontecillas, and D. C. Beitz, “Colonic anti-inflammatory mechanisms of conjugated linoleic acid,” Clinical Nutrition, vol. 21, no. 6, pp. 451–459, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. M. O'Shea, J. Bassaganya-Riera, and I. C. Mohede, “Immunomodulatory properties of conjugated linoleic acid,” The American journal of clinical nutrition, vol. 79, no. 6, pp. 1199S–1206S, 2004. View at Scopus
  50. A. Kennedy, K. Martinez, S. Schmidt, S. Mandrup, K. LaPoint, and M. McIntosh, “Antiobesity mechanisms of action of conjugated linoleic acid,” Journal of Nutritional Biochemistry, vol. 21, no. 3, pp. 171–179, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. G. Sassano, P. Sanderson, J. Franx, P. Groot, J. Van Straalen, and J. Bassaganya-Riera, “Analysis of pomegranate seed oil for the presence of jacaric acid,” Journal of the Science of Food and Agriculture, vol. 89, no. 6, pp. 1046–1052, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. N. H. E. Ahlers, A. C. Dennison, and L. A. O'Neill, “Spectroscopic examination of punicic acid,” Nature, vol. 173, no. 4413, pp. 1045–1046, 1954. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Kaufman and Z. Wiesman, “Pomegranate oil analysis with emphasis on MALDI-TOF/MS triacylglycerol fingerprinting,” Journal of Agricultural and Food Chemistry, vol. 55, no. 25, pp. 10405–10413, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. I. A. T. M. Meerts, C. M. Verspeek-Rip, and C. M. Verspeek-Rip, “Toxicological evaluation of pomegranate seed oil,” Food and Chemical Toxicology, vol. 47, no. 6, pp. 1085–1092, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. D. Muñoz-Mingarro, N. Acero, and N. Acero, “Biological activity of extracts from Catalpa bignonioides Walt. (Bignoniaceae),” Journal of Ethnopharmacology, vol. 87, no. 2-3, pp. 163–167, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Remick, H. Weintraub, R. Setton, J. Offenbacher, E. Fisher, and A. Schwartzbard, “Fibrate therapy: an update,” Cardiology in Review, vol. 16, no. 3, pp. 129–141, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. A. Chawla, W. A. Boisvert, and W. A. Boisvert, “A PPARγ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis,” Molecular Cell, vol. 7, no. 1, pp. 161–171, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Walczak and P. Tontonoz, “PPARadigms and PPARadoxes: expanding roles for PPARγ in the control of lipid metabolism,” Journal of Lipid Research, vol. 43, no. 2, pp. 177–186, 2002. View at Scopus
  59. G. Chinetti, S. Lestavel, and S. Lestavel, “PPAR-α and PPAR-γ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway,” Nature Medicine, vol. 7, no. 1, pp. 53–58, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus