About this Journal Submit a Manuscript Table of Contents
Journal of Obesity
Volume 2011 (2011), Article ID 928165, 13 pages
http://dx.doi.org/10.1155/2011/928165
Review Article

Pharmacological Treatment of Obesity in Children and Adolescents: Present and Future

Obesity Research Center, Department of Pediatrics, University of Modena and Reggio Emilia, Via del Pozzo 71, 41100 Modena, Italy

Received 27 July 2010; Revised 12 October 2010; Accepted 13 October 2010

Academic Editor: A. Halpern

Copyright © 2011 Lorenzo Iughetti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Lobstein, L. Baur, and R. Uauy, “Obesity in children and young people: a crisis in public health,” Obesity Reviews, vol. 5, no. 1, pp. 4–104, 2004. View at Scopus
  2. Y. Wang and T. Lobstein, “Worldwide trends in childhood overweight and obesity,” International Journal of Pediatric Obesity, vol. 1, no. 1, pp. 11–25, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. V. Shrewsbury and J. Wardle, “Socioeconomic status and adiposity in childhood: a systematic review of cross-sectional studies 1990–2005,” Obesity, vol. 16, no. 2, pp. 275–284, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. D. Cooke and S. Bloom, “The obesity pipeline: current strategies in the development of anti-obesity drugs,” Nature Reviews Drug Discovery, vol. 5, no. 11, pp. 919–931, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. S. Arora and Anubhuti, “Role of neuropeptides in appetite regulation and obesity—a review,” Neuropeptides, vol. 40, no. 6, pp. 375–401, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. J. P. H. Wilding, “Neuropeptides and appetite control,” Diabetic Medicine, vol. 19, no. 8, pp. 619–627, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. G. P. August, S. Caprio, I. Fennoy et al., “Prevention and treatment of pediatric obesity: an endocrine society clinical practice guideline based on expert opinion,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 12, pp. 4576–4599, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. J.-P. Chanoine, S. Hampl, C. Jensen, M. Boldrin, and J. Hauptman, “Effect of orlistat on weight and body composition in obese adolescents: a randomized controlled trial,” Journal of the American Medical Association, vol. 293, no. 23, pp. 2873–2883, 2005. View at Publisher · View at Google Scholar · View at PubMed
  9. S. Srinivasan, G. R. Ambler, L. A. Baur et al., “Randomized, controlled trial of metformin for obesity and insulin resistance in children and adolescents: improvement in body composition and fasting insulin,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 6, pp. 2074–2080, 2006. View at Publisher · View at Google Scholar · View at PubMed
  10. J. P. Kay, R. Alemzadeh, G. Langley, L. D'Angelo, P. Smith, and S. Holshouser, “Beneficial effects of metformin in normoglycemic morbidly obese adolescents,” Metabolism, vol. 50, no. 12, pp. 1457–1461, 2001. View at Publisher · View at Google Scholar · View at PubMed
  11. M. Freemark and D. Bursey, “The effects of metformin on body mass index and glucose tolerance in obese adolescents with fasting hyperinsulinemia and a family history of type 2 diabetes,” Pediatrics, vol. 107, no. 4, p. E55, 2001.
  12. K. L. Jones, S. Arslanian, V. A. Peterokova, J.-S. Park, and M. J. Tomlinson, “Effect of metformin in pediatric patients with type 2 diabetes: a randomized controlled trial,” Diabetes Care, vol. 25, no. 1, pp. 89–94, 2002. View at Publisher · View at Google Scholar
  13. R. I. Berkowitz, T. A. Wadden, A. M. Tershakovec, and J. L. Cronquist, “Behavior therapy and sibutramine for the treatment of adolescent obesity: a randomized controlled trial,” Journal of the American Medical Association, vol. 289, no. 14, pp. 1805–1812, 2003. View at Publisher · View at Google Scholar · View at PubMed
  14. R. I. Berkowitz, K. Fujioka, S. R. Daniels et al., “Effects of sibutramine treatment in obese adolescents: a randomized trial,” Annals of Internal Medicine, vol. 145, no. 2, pp. 81–90, 2006.
  15. L. M. García-Morales, A. Berber, C. C. Macias-Lara, C. Lucio-Ortiz, B. E. Del-Rio-Navarro, and L. M. Dorantes-Alvárez, “Use of sibutramine in obese mexican adolescents: a 6-month, randomized, double-blind, placebo-controlled, parallel-group trial,” Clinical Therapeutics, vol. 28, no. 5, pp. 770–782, 2006. View at Publisher · View at Google Scholar · View at PubMed
  16. A. Godoy-Matos, L. Carraro, A. Vieira et al., “Treatment of obese adolescents with sibutramine: a randomized, double-blind, controlled study,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 3, pp. 1460–1465, 2005. View at Publisher · View at Google Scholar · View at PubMed
  17. E. G. A. H. Van Mil, K. R. Westerterp, A. D. M. Kester, H. A. Delemarre-van De Waal, W. J. M. Gerver, and W. H. M. Saris, “The effect of sibutramine on energy expenditure and body composition in obese adolescents,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 4, pp. 1409–1414, 2007. View at Publisher · View at Google Scholar · View at PubMed
  18. S. R. Daniels, B. Long, S. Crow et al., “Cardiovascular effects of sibutramine in the treatment of obese adolescents: results of a randomized, double-blind, placebo-controlled study,” Pediatrics, vol. 120, no. 1, pp. e147–e157, 2007. View at Publisher · View at Google Scholar · View at PubMed
  19. J. B. Hauptman, F. S. Jeunet, and D. Hartmann, “Initial studies in humans with the novel gastrointestinal lipase inhibitor Ro 18-0647 (tetrahydrolipstatin),” American Journal of Clinical Nutrition, vol. 55, no. 1, pp. 309S–313S, 1992.
  20. R. S. Padwal and S. R. Majumdar, “Drug treatments for obesity: orlistat, sibutramine, and rimonabant,” The Lancet, vol. 369, no. 9555, pp. 71–77, 2007. View at Publisher · View at Google Scholar · View at PubMed
  21. Z. Li, M. Maglione, W. Tu et al., “Meta-analysis: pharmacologic treatment of obesity,” Annals of Internal Medicine, vol. 142, no. 7, pp. 532–546, 2005.
  22. J. Zhi, R. Moore, L. Kanitra, and T. E. Mulligan, “Effects of orlistat, a lipase inhibitor, on the pharmacokinetics of three highly lipophilic drugs (amiodarone, fluoxetine, and simvastatin) in healthy volunteers,” Journal of Clinical Pharmacology, vol. 43, no. 4, pp. 428–435, 2003. View at Publisher · View at Google Scholar
  23. J. Zhi, R. Moore, L. Kanitra, and T. E. Mulligan, “Pharmacokinetic evaluation of the possible interaction between selected concomitant medications and orlistat at steady state in healthy subjects,” Journal of Clinical Pharmacology, vol. 42, no. 9, pp. 1011–1019, 2002.
  24. R. S. MacWalter, H. W. Fraser, K. M. Armstrong, G. Rivera-Miranda, and P. Dion, “Orlistat enhances warfarin effect,” Annals of Pharmacotherapy, vol. 37, no. 4, pp. 510–512, 2003.
  25. A. Saenz, I. Fernandez-Esteban, A. Mataix, M. Ausejo, M. Roque, and D. Moher, “Metformin monotherapy for type 2 diabetes mellitus,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD002966, 2005.
  26. R. A. Jackson, M. I. Hawa, J. B. Jaspan et al., “Mechanism of metformin action in non-insulin-dependent diabetes,” Diabetes, vol. 36, no. 5, pp. 632–640, 1987.
  27. S. Srinivasan, G. R. Ambler, L. A. Baur et al., “Randomized, controlled trial of metformin for obesity and insulin resistance in children and adolescents: improvement in body composition and fasting insulin,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 6, pp. 2074–2080, 2006. View at Publisher · View at Google Scholar · View at PubMed
  28. M. Stumvoll, N. Nurjhan, G. Perriello, G. Dailey, and J. E. Gerich, “Metabolic effects of metformin in non-insulin-dependent diabetes mellitus,” The New England Journal of Medicine, vol. 333, no. 9, pp. 550–554, 1995. View at Publisher · View at Google Scholar · View at PubMed
  29. K. Cusi, A. Consoli, and R. A. Defronzo, “Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus,” Journal of Clinical Endocrinology and Metabolism, vol. 81, no. 11, pp. 4059–4067, 1996. View at Publisher · View at Google Scholar
  30. W. C. Knowler, E. Barrett-Connor, S. E. Fowler et al., “Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin,” The New England Journal of Medicine, vol. 346, no. 6, pp. 393–403, 2002. View at Publisher · View at Google Scholar · View at PubMed
  31. A. Lutjens and J. L. J. Smit, “Effect of biguanide treatment in obese children,” Helvetica Paediatrica Acta, vol. 31, no. 6, pp. 473–480, 1976.
  32. W. McNeely and K. L. Goa, “Sibutramine. A review of its contribution to the management of obesity,” Drugs, vol. 56, no. 6, pp. 1093–1124, 1998. View at Publisher · View at Google Scholar
  33. M. E. Lean, “How does sibutramine work?” International Journal of Obesity, vol. 25, 4, pp. S8–S11, 2001.
  34. S. E. Barlow, “Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report,” Pediatrics, vol. 120, pp. S164–192, 2007. View at Publisher · View at Google Scholar · View at PubMed
  35. W. F. Coutinho, “The obese older female patient: CV risk and the SCOUT study,” International Journal of Obesity, vol. 31, no. 2, pp. S26–S30, 2007. View at Publisher · View at Google Scholar · View at PubMed
  36. J. Korner and L. J. Aronne, “Pharmacological approaches to weight reduction: therapeutic targets,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 6, pp. 2616–2621, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. J. Lorber, “Obesity in childhood. A controlled trial of anorectic drugs,” Archives of Disease in Childhood, vol. 41, no. 217, pp. 309–312, 1966. View at Scopus
  38. M. C. Mancini and A. Halpern, “Pharmacological treatment of obesity,” Arquivos Brasileiros de Endocrinologia e Metabologia, vol. 50, no. 2, pp. 377–389, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. J. K. Warnock, A. H. Clayton, H. A. Shaw, and T. O'Donnell, “Onset of menses in two adult patients with Prader-Willi syndrome treated with fluoxetine,” Psychopharmacology Bulletin, vol. 31, no. 2, pp. 239–242, 1995. View at Scopus
  40. J. C. G. Halford, J. A. Harrold, E. J. Boyland, C. L. Lawton, and J. E. Blundell, “Serotonergic drugs: effects on appetite expression and use for the treatment of obesity,” Drugs, vol. 67, no. 1, pp. 27–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. S. W. J. Lamberts, A.-J. van der Lely, W. W. de Herder, and L. J. Hofland, “Drug therapy: octreotide,” The New England Journal of Medicine, vol. 334, no. 4, pp. 255–260, 1996. View at Scopus
  42. A. J. Krentz, P. J. Boyle, L. M. Macdonald, and D. S. Schade, “Octreotide: a long-acting inhibitor of endogenous hormone secretion for human metabolic investigations,” Metabolism, vol. 43, no. 1, pp. 24–31, 1994. View at Publisher · View at Google Scholar · View at Scopus
  43. A. M. Haqq, D. D. Stadler, R. G. Rosenfeld et al., “Circulating ghrelin levels are suppressed by meals and octreotide therapy in children with Prader-Willi syndrome,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 8, pp. 3573–3576, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. H. J. Grill and G. P. Smith, “Cholecystokinin decreases sucrose intake in chronic decerebrate rats,” American Journal of Physiology, vol. 254, no. 6, pp. 853–856, 1988. View at Scopus
  45. R. H. Lustig, F. Greenway, P. Velasquez-Mieyer et al., “A multicenter, randomized, double-blind, placebo-controlled, dose-finding trial of a long-acting formulation of octreotide in promoting weight loss in obese adults with insulin hypersecretion,” International Journal of Obesity, vol. 30, no. 2, pp. 331–341, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. R. H. Lustig, P. S. Hinds, K. Ringwald-Smith et al., “Octreotide therapy of pediatric hypothalamic obesity: a double-blind, placebo-controlled trial,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 6, pp. 2586–2592, 2003. View at Scopus
  47. P. A. Velasquez-Mieyer, P. A. Cowan, K. L. Arheart et al., “Suppression of insulin secretion is associated with weight loss and altered macronutrient intake and preference in a subset of obese adults,” International Journal of Obesity, vol. 27, no. 2, pp. 219–226, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. S. Ezzat, P. J. Snyder, W. F. Young et al., “Octreotide treatment of acromegaly: a randomized, multicenter study,” Annals of Internal Medicine, vol. 117, no. 9, pp. 711–718, 1992. View at Scopus
  49. Y.-L. Liu, S. Toubro, A. Astrup, and M. J. Stock, “Contribution of β3-adrenoceptor activation to ephedrine induced thermogenesis in humans,” International Journal of Obesity, vol. 19, no. 9, pp. 678–685, 1995. View at Scopus
  50. A. Astrup, C. Lundsgaard, J. Madsen, and N. J. Christensen, “Enhanced thermogenic responsiveness during chronic ephedrine treatment in man,” American Journal of Clinical Nutrition, vol. 42, no. 1, pp. 83–94, 1985. View at Scopus
  51. F. Greenway, L. de Jonge, E. Tucker, J. Rood, and S. Smith, “Caffeine and ephedrine become more beta-3 selective with time,” Obesity Research, vol. 8, supplement 1, pp. 70–82, 2000.
  52. R. De Matteis, J. R. S. Arch, M. L. Petroni, D. Ferrari, S. Cinti, and M. J. Stock, “Immunohistochemical identification of the β3-adrenoceptor in intact human adipocytes and ventricular myocardium: effect of obesity and treatment with ephedrine and caffeine,” International Journal of Obesity, vol. 26, no. 11, pp. 1442–1450, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. D. Molnár, K. Török, E. Erhardt, and S. Jeges, “Safety and efficacy of treatment with an ephedrine/caffeine mixture. The first double-blind placebo-controlled pilot study in adolescents,” International Journal of Obesity, vol. 24, no. 12, pp. 1573–1578, 2000. View at Scopus
  54. M. Hallschmid, R. Smolnik, G. McGregor, J. Born, and H. L. Fehm, “Overweight humans are resistant to the weight-reducing effects of melanocortin4-10,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 2, pp. 522–525, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. N. J. Underdown, C. R. Hiley, and W. R. Ford, “Anandamide reduces infarct size in rat isolated hearts subjected to ischaemia-reperfusion by a novel cannabinoid mechanism,” British Journal of Pharmacology, vol. 146, no. 6, pp. 809–816, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. K.-V. Chin, “Small molecule intervention for obesity,” WO08048636, 2008.
  57. A. Uslu, “Pharmaceutical formulations comprising lipase inhibitor,” WO2008082373, 2008.
  58. E. Ravussin, S. R. Smith, J. A. Mitchell et al., “Enhanced weight loss with pramlintide/metreleptin: an integrated neurohormonal approach to obesity pharmacotherapy,” Obesity, vol. 17, no. 9, pp. 1736–1743, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. C. Weyer, P. A. Tataranni, S. Snitker, E. Danforth Jr., and E. Ravussin, “Increase in insulin action and fat oxidation after treatment with CL 316,243, a highly selective β3-adrenoceptor agonist in humans,” Diabetes, vol. 47, no. 10, pp. 1555–1561, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. J. R. S. Arch, “The discovery of drugs for obesity, the metabolic effects of leptin and variable receptor pharmacology: perspectives from β3-adrenoceptor agonists,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 378, no. 2, pp. 225–240, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. D. P. Bradley, R. Kulstad, and D. A. Schoeller, “Exenatide and weight loss,” Nutrition, vol. 26, no. 3, pp. 243–249, 2010. View at Publisher · View at Google Scholar · View at PubMed
  62. K. Niswender, “Diabetes and obesity: therapeutic targeting and risk reduction—a complex interplay,” Diabetes, Obesity and Metabolism, vol. 12, no. 4, pp. 267–287, 2010. View at Publisher · View at Google Scholar · View at PubMed
  63. W. R. Ewing, C. Mapelli, R. B. Sulsky, et al., “Human glucagon-like-peptide-1 modulators and their use in treatment of diabetes and related conditions,” US20080242593, 2008.
  64. L. Hansen and H. B. Mortensen, “Use of GLP1-Agonists in the treatment of patients with type I diabetes,” WO2005023291, 2005.
  65. J. Korner and L. J. Aronne, “Pharmacological approaches to weight reduction: therapeutic targets,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 6, pp. 2616–2621, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. Z. Li, M. Maglione, W. Tu et al., “Meta-analysis: pharmacologic treatment of obesity,” Annals of Internal Medicine, vol. 142, no. 7, pp. 532–546, 2005. View at Scopus
  67. N. T. Bello and M. R. Zahner, “Tesofensine, a monoamine reuptake inhibitor for the treatment of obesity,” Current Opinion in Investigational Drugs, vol. 10, no. 10, pp. 1105–1116, 2009. View at Scopus
  68. R. Padwal, “Contrave, a bupropion and naltrexone combination therapy for the potential treatment of obesity,” Current Opinion in Investigational Drugs, vol. 10, no. 10, pp. 1117–1125, 2009. View at Scopus
  69. F. L. Greenway, K. Fujioka, R. A. Plodkowski et al., “Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial,” The Lancet, vol. 376, no. 9741, pp. 595–605, 2010. View at Publisher · View at Google Scholar
  70. H. Bays, “Phentermine, topiramate and their combination for the treatment of adiposopathy ('sick fat') and metabolic disease,” Expert Review of Cardiovascular Therapy, vol. 8, no. 12, pp. 1777–1801, 2010.
  71. M. Rinaldi-Carmona, F. Barth, M. Héaulme et al., “Biochemical and pharmacological characterisation of SR141716A, the first potent and selective brain cannabinoid receptor antagonist,” Life Sciences, vol. 56, no. 23-24, pp. 1941–1947, 1995. View at Publisher · View at Google Scholar · View at Scopus
  72. M. A. M. Carai, G. Colombo, and G. L. Gessa, “Rimonabant: the first therapeutically relevant cannabinoid antagonist,” Life Sciences, vol. 77, no. 19, pp. 2339–2350, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. Y. L. Liu, I. P. Connoley, C. A. Wilson, and M. J. Stock, “Effects of the cannabinoid CB1 receptor antagonist SR141716 on oxygen consumption and soleus muscle glucose uptake in Lepob/Lep ob mice,” International Journal of Obesity, vol. 29, no. 2, pp. 183–187, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. D. Osei-Hyiaman, M. DePetrillo, P. Pacher et al., “Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity,” Journal of Clinical Investigation, vol. 115, no. 5, pp. 1298–1305, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. D. Cota, G. Marsicano, M. Tschöp et al., “The endogenous cennabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis,” Journal of Clinical Investigation, vol. 112, no. 3, pp. 423–431, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. J.-P. Després, A. Golay, and L. Sjöström, “Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia,” The New England Journal of Medicine, vol. 353, no. 20, pp. 2121–2134, 2005. View at Publisher · View at Google Scholar · View at PubMed
  77. V. Di Marzo and I. Matias, “Endocannabinoid control of food intake and energy balance,” Nature Neuroscience, vol. 8, no. 5, pp. 585–589, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. R. Gómez, M. Navarro, B. Ferrer et al., “A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding,” Journal of Neuroscience, vol. 22, no. 21, pp. 9612–9617, 2002. View at Scopus
  79. M. Gary-Bobo, G. Elachouri, B. Scatton, G. Le Fur, F. Oury-Donat, and M. Bensaid, “The cannabinoid CB1 receptor antagonist rimonabant (SR141716) inhibits cell proliferation and increases markers of adipocyte maturation in cultured mouse 3T3 F442A preadipocytes,” Molecular Pharmacology, vol. 69, no. 2, pp. 471–478, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. M. R. Helvaci, H. Kaya, A. Borazan, C. Ozer, M. Seyhanli, and A. Yalcin, “Metformin and parameters of physical health,” Internal Medicine, vol. 47, no. 8, pp. 697–703, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. C. Addy, P. Rothenberg, S. Li et al., “Multiple-dose pharmacokinetics, pharmacodynamics, and safety of taranabant, a novel selective cannabinoid-1 receptor inverse agonist, in healthy male volunteers,” Journal of Clinical Pharmacology, vol. 48, no. 6, pp. 734–744, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. R. Adler, K. B. Landa, M. Manthorpe, and S. Varon, “Cholinergic neuronotrophic factors: intraocular distribution of trophic activity for ciliary neurons,” Science, vol. 204, no. 4400, pp. 1434–1436, 1979. View at Scopus
  83. L.-F. H. Lin, D. Mismer, J. D. Lile et al., “Purification, cloning, and expression of ciliary neurotrophic factor (CNTF),” Science, vol. 246, no. 4933, pp. 1023–1025, 1989. View at Scopus
  84. S. Davis, T. H. Aldrich, D. M. Valenzuela et al., “The receptor for ciliary neurotrophic factor,” Science, vol. 253, no. 5015, pp. 59–63, 1991. View at Scopus
  85. N. Y. Ip, S. H. Nye, T. G. Boulton et al., “CNTF and LIF act on neuronal cells via shared signaling pathways that involve the IL-6 signal transducing receptor component gp130,” Cell, vol. 69, no. 7, pp. 1121–1132, 1992. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Sendtner, Y. Arakawa, K. A. Stockli, G. W. Kreutzberg, and H. Thoenen, “Effect of ciliary neurotrophic factor (CNTF) on motoneuron survival,” Journal of Cell Science, vol. 100, no. 15, pp. 103–109, 1991. View at Scopus
  87. R. G. Miller, J. H. Petajan, W. W. Bryan et al., “A placebo-controlled trial of recombinant human ciliary neurotrophic (rhCNTF) factor in amyotrophic lateral sclerosis,” Annals of Neurology, vol. 39, no. 2, pp. 256–260, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. W. Pan, A. J. Kastin, L. M. Maness, and J. M. Brennan, “Saturable entry of ciliary neurotrophic factor into brain,” Neuroscience Letters, vol. 263, no. 1, pp. 69–71, 1999. View at Publisher · View at Google Scholar · View at Scopus
  89. B. Xu, M. G. Dube, P. S. Kalra et al., “Anorectic effects of the cytokine, ciliary neurotropic factor, are mediated by hypothalamic neuropeptide Y: comparison with leptin,” Endocrinology, vol. 139, no. 2, pp. 466–473, 1998. View at Publisher · View at Google Scholar · View at Scopus
  90. P. D. Lambert, K. D. Anderson, M. W. Sleeman et al., “Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 8, pp. 4652–4657, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. S. Zvonic, P. Cornelius, W. C. Stewart, R. L. Mynatt, and J. M. Stephens, “The regulation and activation of ciliary neurotrophic factor signaling proteins in adipocytes,” Journal of Biological Chemistry, vol. 278, no. 4, pp. 2228–2235, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. M. Scott, “Methods for identifyng a candidate for treatment of obesity,” WO2006017156, 2006.
  93. B.-A. Bengtsson, S. Eden, L. Lonn et al., “Treatment of adults with growth hormone (GH) deficiency with recombinant human GH,” Journal of Clinical Endocrinology and Metabolism, vol. 76, no. 2, pp. 309–317, 1993. View at Publisher · View at Google Scholar · View at Scopus
  94. F. M. Ng, J. Sun, L. Sharma, R. Libinaka, W. J. Jiang, and R. Gianello, “Metabolic studies of a synthetic lipolytic domain (AOD9604) of human growth hormone,” Hormone Research, vol. 53, no. 6, pp. 274–278, 2000. View at Publisher · View at Google Scholar · View at Scopus
  95. J. E. Wikberg and F. Mutulis, “Targeting melanocortin receptors: an approach to treat weight disorders and sexual dysfunction,” Nature reviews. Drug discovery, vol. 7, no. 4, pp. 307–323, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. L. E. Diamond, D. C. Earle, R. C. Rosen, M. S. Willett, and P. B. Molinoff, “Double-blind, placebo-controlled evaluation of the safety, pharmacokinetic properties and pharmacodynamic effects of intranasal PT-141, a melanocortin receptor agonist, in healthy males and patients with mild-to-moderate erectile dysfunction,” International Journal of Impotence Research, vol. 16, no. 1, pp. 51–59, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. J. P. Beck and B. D. Wakefield, “Novel mch receptor antagonists,” CN101072775, 2007.
  98. R. A. Houghten, C. Dooley, A. Nefzi, Z. Wang, O. Civelli, and H. Nagasaki, “Melanin-concentrating hormone receptor antagonists and methods of use,” US 20080255218, 2008.
  99. D. R. Luthin, “Anti-obesity effects of small molecule melanin-concentrating hormone receptor1 (MCHR1) antagonists,” Life Sciences, vol. 81, no. 6, pp. 423–440, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. K. A. Anderson, T. J. Ribar, F. Lin et al., “Hypothalamic CaMKK2 contributes to the regulation of energy balance,” Cell Metabolism, vol. 7, no. 5, pp. 377–388, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus