About this Journal Submit a Manuscript Table of Contents
Journal of Obesity
Volume 2012 (2012), Article ID 102942, 8 pages
http://dx.doi.org/10.1155/2012/102942
Clinical Study

Association between BDNF rs6265 and Obesity in the Boston Puerto Rican Health Study

1Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
2Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
3Alzheimer’s Disease Center at Boston university, Boston, MA 02215, USA
4Department of Health Sciences, Northeastern University, Boston, MA 02115, USA

Received 12 September 2012; Revised 6 November 2012; Accepted 27 November 2012

Academic Editor: David Allison

Copyright © 2012 Xian-Yong Ma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. A. Christakis and J. H. Fowler, “The spread of obesity in a large social network over 32 years,” The New England Journal of Medicine, vol. 357, no. 4, pp. 370–379, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. H. H. M. Maes, M. C. Neale, and L. J. Eaves, “Genetic and environmental factors in relative body weight and human adiposity,” Behavior Genetics, vol. 27, no. 4, pp. 325–351, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Monteleone, A. Tortorella, V. Martiadis, C. Serritella, A. Fuschino, and M. Maj, “Opposite changes in the serum brain-derived neurotrophic factor in anorexia nervosa and obesity,” Psychosomatic Medicine, vol. 66, no. 5, pp. 744–748, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. A. H. El-Gharbawy, D. C. Adler-Wailes, M. C. Mirch et al., “Serum brain-derived neurotrophic factor concentrations in lean and overweight children and adolescents,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 9, pp. 3548–3552, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Lyons, L. A. Mamounas, G. A. Ricaurte et al., “Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 26, pp. 15239–15244, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Rios, G. Fan, C. Fekete et al., “Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity,” Molecular Endocrinology, vol. 15, no. 10, pp. 1748–1757, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Cao, E. Y. Choi, X. L. Liu, et al., “White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic—adipocyte axis,” Cell Metabolism, vol. 14, pp. 324–338, 2011.
  8. K. S. Krabbe, A. R. Nielsen, R. Krogh-Madsen, et al., “Brain derived neurotrophic factor (BDNF) and type 2 diabetes,” Diabetologia, vol. 50, pp. 431–438, 2007.
  9. G. S. H. Yeo, C. C. C. Hung, J. Rochford et al., “A de novo mutation affecting human TrkB associated with severe obesity and developmental delay,” Nature Neuroscience, vol. 7, no. 11, pp. 1187–1189, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Yu, Q. Wang, and X. F. Huang, “Energy-restricted pair-feeding normalizes low levels of brain-derived neurotrophic factor/tyrosine kinase B mRNA expression in the hippocampus, but not ventromedial hypothalamic nucleus, in diet-induced obese mice,” Neuroscience, vol. 160, no. 2, pp. 295–306, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Friedel, F. F. Horro, A. K. Wermter et al., “Mutation screen of the brain derived neurotrophic factor gene (BDNF): identification of several genetic variants and association studies in patients with obesity, eating disorders, and attention-deficit/hyperactivity disorder,” American Journal of Medical Genetics, vol. 132, no. 1, pp. 96–99, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Ribasés, M. Gratacòs, F. Fernández-Aranda, et al., “Association of BDNF with anorexia, bulimia and age of onset of weight loss in six European populations,” Human Molecular Genetics, vol. 13, pp. 1205–1212, 2004.
  13. S. Beckers, A. Peeters, D. Zegers, I. Mertens, L. V. Gaal, and W. Van Hul, “Association of the BDNF Val66Met variation with obesity in women,” Molecular Genetics and Metabolism, vol. 95, no. 1-2, pp. 110–112, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Gunstad, P. Schofield, R. H. Paul et al., “BDNF Val66Met polymorphism is associated with body mass index in healthy adults,” Neuropsychobiology, vol. 53, no. 3, pp. 153–156, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Zhao, J. P. Bradfield, M. Li et al., “The role of obesity-associated loci identified in genome-wide association studies in the determination of pediatric BMI,” Obesity, vol. 17, no. 12, pp. 2254–2257, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Y. Chen, P. D. Patel, G. Sant et al., “Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons,” Journal of Neuroscience, vol. 24, no. 18, pp. 4401–4411, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. M. F. Egan, M. Kojima, J. H. Callicott et al., “The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function,” Cell, vol. 112, no. 2, pp. 257–269, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. K. L. Tucker, “Stress and nutrition in relation to excess development of chronic disease in Puerto Rican adults living in the Northeastern USA,” Journal of Medical Investigation, vol. 52, pp. 252–258, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Q. Lai, K. L. Tucker, L. D. Parnell et al., “PPARGC1A variation associated with DNA damage, diabetes, and cardiovascular diseases the boston puerto rican health study,” Diabetes, vol. 57, no. 4, pp. 809–816, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. K. L. Tucker, L. A. Bianchi, J. Maras, and O. I. Bermudez, “Adaptation of a food frequency questionnaire to assess diets of Puerto Rican and non-Hispanic adults,” American Journal of Epidemiology, vol. 148, no. 5, pp. 507–518, 1998. View at Scopus
  21. K. L. Tucker, J. Mattei, S. E. Noel et al., “The Boston Puerto Rican health study, a longitudinal cohort study on health disparities in Puerto Rican adults: challenges and opportunities,” BMC Public Health, vol. 10, article 107, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Q. Lai, K. L. Tucker, S. Choudhry et al., “Population admixture associated with disease prevalence in the Boston Puerto Rican health study,” Human Genetics, vol. 125, no. 2, pp. 199–209, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Li and L. Ji, “Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix,” Heredity, vol. 95, no. 3, pp. 221–227, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. P. C. Maisonpierre, L. Belluscio, B. Friedman et al., “NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression,” Neuron, vol. 5, no. 4, pp. 501–509, 1990. View at Publisher · View at Google Scholar · View at Scopus
  25. S. G. Kernie, D. J. Liebl, and L. F. Parada, “BDNF regulates eating behavior and locomotor activity in mice,” The EMBO Journal, vol. 19, no. 6, pp. 1290–1300, 2000. View at Scopus
  26. B. K. Pedersen, M. Pedersen, K. S. Krabbe, H. Bruunsgaard, V. B. Matthews, and M. A. Febbraio, “Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals,” Experimental Physiology, vol. 94, no. 12, pp. 1153–1160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Y. Zhang, D. F. Zhou, G. Y. Wu et al., “BDNF levels and genotype are associated with antipsychotic-induced weight gain in patients with chronic schizophrenia,” Neuropsychopharmacology, vol. 33, no. 9, pp. 2200–2205, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Akkermann, K. Hiio, I. Villa, and J. Harro, “Food restriction leads to binge eating dependent upon the effect of the brain-derived neurotrophic factor Val66Met polymorphism,” Psychiatry Research, vol. 185, no. 1-2, pp. 39–43, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Y. Shugart, L. Chen, I. N. M. Day et al., “Two British women studies replicated the association between the Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) and BMI,” European Journal of Human Genetics, vol. 17, no. 8, pp. 1050–1055, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. V. Arija, M. Ferrer-Barcala, N. Aranda, and J. Canals, “BDNF Val66Met polymorphism, energy intake and BMI: a follow-up study in schoolchildren at risk of eating disorders,” BMC Public Health, vol. 10, article 363, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. I. van Oostrom, B. Franke, M. Rijpkema, et al., “Interaction between BDNF Val66Met and childhood stressful life events is associated to affective memory bias in men but not women,” Biological Psychology, vol. 89, no. 1, pp. 214–219, 2012.
  32. M. Ono, Y. Itakura, T. Nonomura et al., “Intermittent administration of brain-derived neurotrophic factor ameliorates glucose metabolism in obese diabetic mice,” Metabolism, vol. 49, no. 1, pp. 129–133, 2000. View at Scopus
  33. J. R. Tonra, M. Ono, X. Liu et al., “Brain-derived neurotrophic factor improves blood glucose control and alleviates fasting hyperglycemia in C57BLKS-leprdb/leprdb mice,” Diabetes, vol. 48, no. 3, pp. 588–594, 1999. View at Scopus
  34. M. A. Pelleymounter, M. J. Cullen, and C. L. Wellman, “Characteristics of BDNF-induced weight loss,” Experimental Neurology, vol. 131, no. 2, pp. 229–238, 1995. View at Scopus
  35. B. Xu, E. H. Goulding, K. Zang et al., “Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor,” Nature Neuroscience, vol. 6, no. 7, pp. 736–742, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. S. I. Rapoport, J. S. Rao, and M. Igarashi, “Brain metabolism of nutritionally essential polyunsaturated fatty acids depends on both the diet and the liver,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 77, no. 5-6, pp. 251–261, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Vines, A. M. Delattre, M. M. Lima, et al., “The role of 5-HT1A receptors in fish oil-mediated increased BDNF expression in the rat hippocampus and cortex: a possible antidepressant mechanism,” Neuropharmacology, vol. 62, no. 1, pp. 184–191, 2012.