About this Journal Submit a Manuscript Table of Contents
Journal of Obesity
Volume 2012 (2012), Article ID 318176, 8 pages
http://dx.doi.org/10.1155/2012/318176
Clinical Study

Treadmill Calibration of the Actigraph GT1M in Young-to-Middle-Aged Obese-to-Severely Obese Subjects

1Faculty of Health Studies, Sogn og Fjordane University College, P.O. Box 523, 6803 Førde, Norway
2Department of Sports Medicine, Norwegian School of Sport Sciences, P.O. Box 4014, Ullevaal Stadion, 0806 Oslo, Norway

Received 21 August 2012; Revised 2 October 2012; Accepted 2 October 2012

Academic Editor: David Allison

Copyright © 2012 Eivind Aadland and Sigmund Alfred Anderssen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. US Department of Health and Human Services, “Physical activity guidelines advisory committee report 2008. Part A: executive Summary,” Nutrition Reviews, vol. 67, no. 2, pp. 114–120, 2009.
  2. W. L. Haskell, I. M. Lee, R. R. Pate et al., “Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association,” Medicine and Science in Sports and Exercise, vol. 39, no. 8, pp. 1423–1434, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. P. S. Freedson, E. Melanson, and J. Sirard, “Calibration of the computer science and applications, Inc. accelerometer,” Medicine and Science in Sports and Exercise, vol. 30, no. 5, pp. 777–781, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. J. F. Nichols, C. G. Morgan, L. E. Chabot, J. F. Sallis, and K. J. Calfas, “Assessment of physical activity with the computer science and applications, Inc., accelerometer: laboratory versus field validation,” Research Quarterly for Exercise and Sport, vol. 71, no. 1, pp. 36–43, 2000. View at Scopus
  5. A. Yngve, A. Nilsson, M. Sjöström, and U. Ekelund, “Effect of monitor placement and of activity setting on the MTI accelerometer output,” Medicine and Science in Sports and Exercise, vol. 35, no. 2, pp. 320–326, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Brage, N. Wedderkopp, P. W. Franks, L. Bo Andersen, and K. Froberg, “Reexamination of validity and reliability of the CSA monitor in walking and running,” Medicine and Science in Sports and Exercise, vol. 35, no. 8, pp. 1447–1454, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Y. J. M. Leenders, T. E. Nelson, and W. M. Sherman, “Ability of different physical activity monitors to detect movement during treadmill walking,” International Journal of Sports Medicine, vol. 24, no. 1, pp. 43–50, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Hendelman, K. Miller, C. Baggett, E. Debold, and P. Freedson, “Validity of accelerometry for the assessment of moderate intensity physical activity in the field,” Medicine and Science in Sports and Exercise, vol. 32, no. 9, pp. S442–S449, 2000. View at Scopus
  9. A. M. Swartz, S. J. Strath, D. R. Bassett, W. L. O'Brien, G. A. King, and B. E. Ainsworth, “Estimation of energy expenditure using CSA accelerometers at hip and wrist sites,” Medicine and Science in Sports and Exercise, vol. 32, no. 9, pp. S450–S456, 2000. View at Scopus
  10. V. P. Lopes, P. Magalhães, J. Bragada, and C. Vasques, “Actigraph calibration in obese/overweight and type 2 diabetes mellitus middle-aged to old adult patients.,” Journal of Physical Activity & Health, vol. 6, supplement 1, pp. S133–S140, 2009. View at Scopus
  11. J. S. Metzger, D. J. Catellier, K. R. Evenson, M. S. Treuth, W. D. Rosamond, and A. M. Siega-Riz, “Patterns of objectively measured physical activity in the United States,” Medicine and Science in Sports and Exercise, vol. 40, no. 4, pp. 630–638, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. J. Strath, K. A. Pfeiffer, and M. C. Whitt-Glover, “Accelerometer use with children, older adults, and adults with functional limitations,” Medicine & Science in Sports & Exercise, vol. 44, supplement 1, pp. S77–S85, 2012. View at Publisher · View at Google Scholar
  13. R. C. Browning, E. A. Baker, J. A. Herron, and R. Kram, “Effects of obesity and sex on the energetic cost and preferred speed of walking,” Journal of Applied Physiology, vol. 100, no. 2, pp. 390–398, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. O. S. Mian, J. M. Thom, L. P. Ardigò, M. V. Narici, and A. E. Minetti, “Metabolic cost, mechanical work, and efficiency during walking in young and older men,” Acta Physiologica, vol. 186, no. 2, pp. 127–139, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. D. S. Peterson and P. E. Martin, “Effects of age and walking speed on coactivation and cost of walking in healthy adults,” Gait and Posture, vol. 31, no. 3, pp. 355–359, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Feito, D. R. Bassett, B. Tyo, and D. L. Thompson, “Effects of body mass index and tilt angle on output of two wearable activity monitors,” Medicine and Science in Sports and Exercise, vol. 43, no. 5, pp. 861–866, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. N. E. Miller, S. J. Strath, A. M. Swartz, and S. E. Cashin, “Estimating absolute and relative physical activity intensity across age via accelerometry in adults,” Journal of Aging and Physical Activity, vol. 18, no. 2, pp. 158–170, 2010. View at Scopus
  18. N. M. Byrne, A. P. Hills, G. R. Hunter, R. L. Weinsier, and Y. Schutz, “Metabolic equivalent: one size does not fit all,” Journal of Applied Physiology, vol. 99, no. 3, pp. 1112–1119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. J. J. Kavanagh and H. B. Menz, “Accelerometry: a technique for quantifying movement patterns during walking,” Gait and Posture, vol. 28, no. 1, pp. 1–15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. H. J. Yack and R. C. Berger, “Dynamic stability in the elderly: identifying a possible measure,” Journals of Gerontology, vol. 48, no. 5, pp. M225–M230, 1993. View at Scopus
  21. S. Kozey, K. Lyden, J. Staudenmayer, and P. Freedson, “Errors in MET estimates of physical activities using 3.5 ml.kg−1. min−1 as the baseline oxygen consumption,” Journal of Physical Activity and Health, vol. 7, no. 4, pp. 508–516, 2010. View at Scopus
  22. E. T. Howley, “To the editor,” Journal of Physical Activity and Health, vol. 8, no. 1, pp. 141–142, 2011. View at Scopus
  23. B. E. Ainsworth, W. L. Haskell, S. D. Herrmann et al., “2011 compendium of physical activities: a second update of codes and MET values,” Medicine and Science in Sports and Exercise, vol. 43, no. 8, pp. 1575–1581, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. N. F. Butte, U. Ekelund, and K. R. Westerterp, “Assessing physical activity using wearable monitors: measures of physical activity,” Medicine & Science in Sports & Exercise, vol. 44, supplement 1, pp. S5–S12, 2012. View at Publisher · View at Google Scholar
  25. J. S. Harrell, R. G. Mcmurray, C. D. Baggett, M. L. Pennell, P. F. Pearce, and S. I. Bangdiwala, “Energy costs of physical activities in children and adolescents,” Medicine and Science in Sports and Exercise, vol. 37, no. 2, pp. 329–336, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Ridley and T. S. Olds, “Assigning energy costs to activities in children: a review and synthesis,” Medicine and Science in Sports and Exercise, vol. 40, no. 8, pp. 1439–1446, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. D. R. Bassett, A. Rowlands, and S. G. Trost, “Calibration and validation of wearable monitors,” Medicine & Science in Sports & Exercise, vol. 44, supplement 1, pp. S32–SS8, 2012. View at Publisher · View at Google Scholar
  28. G. J. Welk, “Principles of design and analyses for the calibration of accelerometry-based activity monitors,” Medicine and Science in Sports and Exercise, vol. 37, no. 11, pp. S501–S511, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. D. John and P. Freedson, “ActiGraph and Actical physical activity monitors: a peek under the hood,” Medicine & Science in Sports & Exercise, vol. 44, supplement 1, pp. S86–SS9, 2012. View at Publisher · View at Google Scholar
  30. A. P. Gagge, A. C. Burton, and H. C. Bazett, “A practical system of units for the description of the heat exchange of man with his environment,” Science, vol. 94, no. 2445, pp. 428–430, 1941. View at Scopus
  31. J.I. Medbø, A. Mamen, and G.K. Resaland, “New examination of the performance of the MetaMax i metabolic analyser with the Douglas-bag technique,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 72, no. 2, pp. 158–168, 2012. View at Publisher · View at Google Scholar
  32. T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters, vol. 27, no. 8, pp. 861–874, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. R. P. Troiano, D. Berrigan, K. W. Dodd, L. C. Mâsse, T. Tilert, and M. Mcdowell, “Physical activity in the United States measured by accelerometer,” Medicine and Science in Sports and Exercise, vol. 40, no. 1, pp. 181–188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. M. P. Rothney, G. A. Apker, Y. Song, and K. Y. Chen, “Comparing the performance of three generations of ActiGraph accelerometers,” Journal of Applied Physiology, vol. 105, no. 4, pp. 1091–1097, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. S. L. Kozey, J. W. Staudenmayer, R. P. Troiano, and P. S. Freedson, “Comparison of the actigraph 7164 and the actigraph GT1M during self-paced locomotion,” Medicine and Science in Sports and Exercise, vol. 42, no. 5, pp. 971–976, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. D. John, B. Tyo, and D. R. Bassett, “Comparison of four actigraph accelerometers during walking and running,” Medicine and Science in Sports and Exercise, vol. 42, no. 2, pp. 368–374, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. B. S. Metcalf, J. S. H. Curnow, C. Evans, L. D. Voss, and T. J. Wilkin, “Technical reliability of the CSA activity monitor: the EarlyBird Study,” Medicine and Science in Sports and Exercise, vol. 34, no. 9, pp. 1533–1537, 2002. View at Scopus
  38. C. Tudor-Locke, M. M. Brashear, W. D. Johnson, and P. T. Katzmarzyk, “Accelerometer profiles of physical activity and inactivity in normal weight, overweight, and obese U.S. men and women,” International Journal of Behavioral Nutrition and Physical Activity, vol. 7, p. 60, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Hagströmer, P. Oja, and M. Sjöström, “Physical activity and inactivity in an adult population assessed by accelerometry,” Medicine and Science in Sports and Exercise, vol. 39, no. 9, pp. 1502–1508, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. A. R. Cooper, A. Page, K. R. Fox, and J. Misson, “Physical activity patterns in normal, overweight and obese individuals using minute-by-minute accelerometry,” European Journal of Clinical Nutrition, vol. 54, no. 12, pp. 887–894, 2000. View at Scopus
  41. J. E. Sasaki, D. John, and P. S. Freedson, “Validation and comparison of ActiGraph activity monitors,” Journal of Science and Medicine in Sport, vol. 14, no. 5, pp. 411–416, 2011. View at Publisher · View at Google Scholar · View at Scopus