About this Journal Submit a Manuscript Table of Contents
Journal of Obesity
Volume 2012 (2012), Article ID 319172, 7 pages
http://dx.doi.org/10.1155/2012/319172
Research Article

Choline Deficiency Attenuates Body Weight Gain and Improves Glucose Tolerance in ob/ob Mice

1Group on the Molecular and Cell Biology of Lipids and Department of Biochemistry, University of Alberta, Edmonton, AB, Canada T6G 2S2
2Cardiovascular Research Group, University of Alberta, Edmonton, AB, Canada T6G 2S2
3Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada T6G 2S2

Received 1 November 2011; Revised 2 February 2012; Accepted 16 February 2012

Academic Editor: Bernhard Breier

Copyright © 2012 Gengshu Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. H. Zeisel, “Nutritional importance of choline for brain development,” Journal of the American College of Nutrition, vol. 23, no. 6, pp. 621S–626S, 2004. View at Scopus
  2. C. B. Hollenbeck, “The Importance of Being Choline,” Journal of the American Dietetic Association, vol. 110, no. 8, pp. 1162–1165, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. D. E. Vance and N. D. Ridgway, “The methylation of phosphatidylethanolamine,” Progress in Lipid Research, vol. 27, no. 1, pp. 61–79, 1988. View at Scopus
  4. C. J. Walkey, L. R. Donohue, R. Bronson, L. B. Agellon, and D. E. Vance, “Disruption of the murine gene encoding phosphatidylethanolamine N-methyltransferase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 24, pp. 12880–12885, 1997. View at Scopus
  5. R. L. Jacobs, Y. Zhao, D. P. Y. Koonen et al., “Impaired de novo choline synthesis explains why phosphatidylethanolamine N-methyltransferase-deficient mice are protected from diet-induced obesity,” Journal of Biological Chemistry, vol. 285, no. 29, pp. 22403–22413, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Rubio-Aliaga, B. de Roos, M. Sailer et al., “Alterations in hepatic one-carbon metabolism and related pathways following a high-fat dietary intervention,” Physiological Genomics, vol. 43, no. 8, pp. 408–416, 2011. View at Publisher · View at Google Scholar
  7. A. Maresca and C. T. Supuran, “Muscarinic acetylcholine receptors as therapeutic targets for obesity,” Expert Opinion on Therapeutic Targets, vol. 12, no. 9, pp. 1167–1175, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. B. Marrero, R. Lucas, C. Salet et al., “An α7 nicotinic acetylcholine receptor-selective agonist reduces weight gain and metabolic changes in a mouse model of diabetes,” Journal of Pharmacology and Experimental Therapeutics, vol. 332, no. 1, pp. 173–180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Gautam, O. Gavrilova, J. Jeon et al., “Beneficial metabolic effects of M3 muscarinic acetylcholine receptor deficiency,” Cell Metabolism, vol. 4, no. 5, pp. 363–375, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Li and D. E. Vance, “Phosphatidylcholine and choline homeostasis,” Journal of Lipid Research, vol. 49, no. 6, pp. 1187–1194, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. P. J. Raubenheimer, M. J. Nyirenda, and B. R. Walker, “A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet,” Diabetes, vol. 55, no. 7, pp. 2015–2020, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. H. M. Feldmann, V. Golozoubova, B. Cannon, and J. Nedergaard, “UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality,” Cell Metabolism, vol. 9, no. 2, pp. 203–209, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Henkel, M. Menschikowski, C. Koehler, W. Leonhardt, and M. Hanefeld, “Impact of glucagon response on postprandial hyperglycemia in men with impaired glucose tolerance and type 2 diabetes mellitus,” Metabolism, vol. 54, no. 9, pp. 1168–1173, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. O. Ilcol, M. Cansev, M. S. Yilmaz, E. Hamurtekin, and I. H. Ulus, “Peripheral administration of CDP-choline and its cholinergic metabolites increases serum insulin: muscarinic and nicotinic acetylcholine receptors are both involved in their actions,” Neuroscience Letters, vol. 431, no. 1, pp. 71–76, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Cansev, Y. O. Ilcol, M. S. Yilmaz, E. Hamurtekin, and I. H. Ulus, “Choline, CDP-choline or phosphocholine increases plasma glucagon in rats: involvement of the peripheral autonomic nervous system,” European Journal of Pharmacology, vol. 589, no. 1-3, pp. 315–322, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. S. W. Djuric, N. Grihalde, and C. W. Lin, “Glucagon receptor antagonists for the treatment of type II diabetes: current prospects,” Current Opinion in Investigational Drugs, vol. 3, no. 11, pp. 1617–1623, 2002. View at Scopus
  17. W. Gu, D. J. Lloyd, N. Chinookswong et al., “Pharmacological targeting of glucagon and glucagon-like peptide 1 receptors has different effects on energy state and glucose homeostasis in diet-induced obese mice,” Journal of Pharmacology and Experimental Therapeutics, vol. 338, no. 1, pp. 70–81, 2011. View at Publisher · View at Google Scholar
  18. D. Gao, S. Nong, X. Huang et al., “The effects of palmitate on hepatic insulin resistance are mediated by NADPH oxidase 3-derived reactive oxygen species through JNK and p38 MAPK pathways,” Journal of Biological Chemistry, vol. 285, no. 39, pp. 29965–29973, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. K. Ghoshal and E. Farber, “Choline deficiency, lipotrope deficiency and the development of liver disease including liver cancer: a new perspective,” Laboratory Investigation, vol. 68, no. 3, pp. 255–260, 1993. View at Scopus
  20. Y. K. J. Zhang, R. L. Yeager, Y. Tanaka, and C. D. Klaassen, “Enhanced expression of Nrf2 in mice attenuates the fatty liver produced by a methionine- and choline-deficient diet,” Toxicology and Applied Pharmacology, vol. 245, no. 3, pp. 326–334, 2010. View at Publisher · View at Google Scholar · View at Scopus