About this Journal Submit a Manuscript Table of Contents
Journal of Obesity
Volume 2013 (2013), Article ID 159123, 10 pages
http://dx.doi.org/10.1155/2013/159123
Research Article

The Epidemiological Boehringer Ingelheim Employee Study—Part I: Impact of Overweight and Obesity on Cardiometabolic Risk

1West-German Centre of Diabetes and Health, Düsseldorf Catholic Hospital Group, 40591 Düsseldorf, Germany
2Department of Medical Statistics, RWTH-Aachen University, 52062 Aachen, Germany
3Boehringer Ingelheim Pharma GmbH, 55218 Ingelheim, Germany
4Boehringer Ingelheim Pharma GmbH & Co. KG, 55218 Ingelheim, Germany
5mediStatistica, 58809 Neuenrade, Germany
6Medical Corporate Department, Boehringer Ingelheim Pharma GmbH & Co. KG, 55218 Ingelheim, Germany
7Mannheim Institute for Public Health, Medical Faculty Mannheim, Ruprecht-Karls University Heidelberg, 68131 Mannheim, Germany

Received 8 April 2013; Revised 25 June 2013; Accepted 9 July 2013

Academic Editor: Rob Van Dam

Copyright © 2013 Kerstin Kempf et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Kuulasmaa, H. Tunstall-Pedoe, A. Dobson et al., “Estimation of contribution of changes in classic risk factors to trends in coronary-event rates across the WHO MONICA Project populations,” The Lancet, vol. 355, no. 9205, pp. 675–687, 2000. View at Scopus
  2. A. Konnopka, M. Bödemann, and H.-H. König, “Health burden and costs of obesity and overweight in Germany,” European Journal of Health Economics, vol. 12, no. 4, pp. 345–352, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. N. J. Perkins and E. F. Schisterman, “The inconsistency of “optimal” cutpoints obtained using two criteria based on the receiver operating characteristic curve,” American Journal of Epidemiology, vol. 163, no. 7, pp. 670–675, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. G. D. Batty, M. J. Shipley, R. J. Jarrett, E. Breeze, M. G. Marmot, and G. Davey Smith, “Obesity and overweight in relation to disease-specific mortality in men with and without existing coronary heart disease in London: the original Whitehall study,” Heart, vol. 92, no. 7, pp. 886–892, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. G. A. Colditz and S. E. Hankinson, “The nurses' health study: lifestyle and health among women,” Nature Reviews Cancer, vol. 5, no. 5, pp. 388–396, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. E. Widlansky, H. D. Sesso, K. M. Rexrode, J. E. Manson, and J. M. Gaziano, “Body mass index and total and cardiovascular mortality in men with a history of cardiovascular disease,” Archives of Internal Medicine, vol. 164, no. 21, pp. 2326–2332, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Tuomilehto, K. Kuulasmaa, and J. Torppa, “WHO MONICA Project: geographic variation in mortality from cardiovascular diseases. Baseline data on selected population characteristics and cardiovascular mortality,” World health Statistics Quarterly, vol. 40, no. 2, pp. 171–184, 1987. View at Scopus
  8. W. Rathmann, B. Haastert, A. Icks et al., “High prevalence of undiagnosed diabetes mellitus in Southern Germany: target populations for efficient screening. The KORA survey 2000,” Diabetologia, vol. 46, no. 2, pp. 182–189, 2003. View at Scopus
  9. A. Schmermund, S. Möhlenkamp, A. Stang et al., “Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged subjects: rationale and design of the Heinz Nixdorf RECALL study,” American Heart Journal, vol. 144, no. 2, pp. 212–218, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. Max Rubner-Institut, “Nationale Verzehrsstudie II,” Bundesforschungsinstitut für Ernährung und Lebensmittel, 2008.
  11. W. Koenig, M. Karakas, A. Zierer et al., “Oxidized LDL and the risk of coronary heart disease: results from the MONICA/KORA Augsburg study,” Clinical Chemistry, vol. 57, no. 8, pp. 1196–1200, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Herder, W. Peeters, T. Illig et al., “RANTES/CCL5 and risk for coronary events: results from the MONICA/KORA Augsburg case-cohort, Athero-express and CARDIoGRAM studies,” PLoS One, vol. 6, no. 12, Article ID e25734, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Möhlenkamp, N. Lehmann, S. Moebus et al., “Quantification of coronary atherosclerosis and inflammation to predict coronary events and all-cause mortality,” Journal of the American College of Cardiology, vol. 57, no. 13, pp. 1455–1464, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Tuomilehto, J. Lindström, J. G. Eriksson et al., “Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance,” The New England Journal of Medicine, vol. 344, no. 18, pp. 1343–1350, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Ramachandran, C. Snehalatha, S. Mary, B. Mukesh, A. D. Bhaskar, and V. Vijay, “The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1),” Diabetologia, vol. 49, no. 2, pp. 289–297, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. X.-R. Pan, G.-W. Li, Y.-H. Hu et al., “Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and diabetes study,” Diabetes Care, vol. 20, no. 4, pp. 537–544, 1997. View at Scopus
  17. W. C. Knowler, E. Barrett-Connor, S. E. Fowler et al., “Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin,” The New England Journal of Medicine, vol. 346, no. 6, pp. 393–403, 2002. View at Publisher · View at Google Scholar · View at Scopus