About this Journal Submit a Manuscript Table of Contents
Journal of Obesity
Volume 2013 (2013), Article ID 280713, 9 pages
http://dx.doi.org/10.1155/2013/280713
Review Article

Ultrasound as a Tool to Assess Body Fat

Human Movement Science Program, Health, Physical Education and Recreation Department, Utah State University, 7000 Old Main Hill, Logan, UT 84322-7000, USA

Received 5 June 2013; Accepted 26 July 2013

Academic Editor: Jordi Salas-Salvadó

Copyright © 2013 Dale R. Wagner. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. S. W. Davies and T. J. Cole, Body Composition Techniques in Health and Disease, Cambridge University Press, Cambridge, UK, 1995.
  2. V. H. Heyward and D. R. Wagner, Applied Body Composition Assessment, Human Kinetics Books, Champaign, Ill, USA, 2nd edition, 2004.
  3. T. Jürimäe and A. P. Hills, Body Composition Assessment in Children and Adolescents, Karger, Basil, Switzerland, 2001.
  4. K. J. Ellis, “Human body composition: in vivo methods,” Physiological Reviews, vol. 80, no. 2, pp. 649–680, 2000. View at Scopus
  5. M. Fogelholm and W. van Marken Lichtenbelt, “Comparison of body composition methods: a literature analysis,” European Journal of Clinical Nutrition, vol. 51, no. 8, pp. 495–503, 1997. View at Scopus
  6. B. H. Goodpaster, “Measuring body fat distribution and content in humans,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 5, no. 5, pp. 481–487, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. S. B. Heymsfield, Z. Wang, R. N. Baumgartner, and R. Ross, “Human body composition: advances in models and methods,” Annual Review of Nutrition, vol. 17, pp. 527–558, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. V. H. Heyward, “Evaluation of body composition. Current issues,” Sports Medicine, vol. 22, no. 3, pp. 146–156, 1996. View at Scopus
  9. S. A. Jebb and M. Elia, “Techniques for the measurement of body composition: a practical guide,” International Journal of Obesity, vol. 17, no. 11, pp. 611–621, 1993. View at Scopus
  10. S. Y. Lee and D. Gallagher, “Assessment methods in human body composition,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 11, no. 5, pp. 566–572, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. D. R. Wagner and V. H. Heyward, “Techniques of body composition assessment: a review of laboratory and field methods,” Research Quarterly for Exercise and Sport, vol. 70, no. 2, pp. 135–149, 1999. View at Scopus
  12. R. A. Booth, B. A. Goddard, and A. Paton, “Measurement of fat thickness in man: a comparison of ultrasound, Harpenden calipers and electrical conductivity,” British Journal of Nutrition, vol. 20, no. 4, pp. 719–725, 1966. View at Scopus
  13. B. A. Bullen, F. Quaade, E. Olessen, and S. A. Lund, “Ultrasonic reflections used for measuring subcutaneous fat in humans,” Human Biology, vol. 37, no. 4, pp. 375–384, 1965. View at Scopus
  14. P. Sprawls, Physical Principles of Medical Imaging, Aspen, Rockville, Md, USA, 1987.
  15. J. T. Bushberg, J. A. Seibert, E. M. Leidholdt, and J. M. Boone, The Essential Physics of Medical Imaging, Williams & Wilkins, Philadelphia, Pa, USA, 2nd edition, 2002.
  16. L. Silva, An Introduction to Ultrasound and the BodyMetrix System, IntelaMetrix, Livermore, Calif, USA, 2010.
  17. J. P. Noce, “Fundamentals of diagnostic ultrasonography,” Biomedical Instrumentation and Technology, vol. 24, no. 6, pp. 456–459, 1990. View at Scopus
  18. J.-C. Pineau, A.-M. Guihard-Costa, and M. Bocquet, “Validation of ultrasound techniques applied to body fat measurement: a comparison between ultrasound techniques, air displacement plethysmography and bioelectrical impedance vs. dual-energy X-ray absorptiometry,” Annals of Nutrition and Metabolism, vol. 51, no. 5, pp. 421–427, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. J.-C. Pineau, L. Lalys, M. Bocquet et al., “Ultrasound measurement of total body fat in obese adolescents,” Annals of Nutrition and Metabolism, vol. 56, no. 1, pp. 36–44, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. S. L. Bernstein, Y. D. Coble Jr., A. B. Eisenbrey et al., “The future of ultrasonography: report of the ultrasonography task force,” Journal of the American Medical Association, vol. 266, no. 3, pp. 406–409, 1991. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Gulizia, A. Uglietti, A. Grisolia, C. Gervasoni, M. Galli, and C. Filice, “Proven intra and interobserver reliability in the echographic assessments of body fat changes related to HIV associated Adipose Redistribution Syndrome (HARS),” Current HIV Research, vol. 6, no. 4, pp. 276–278, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Inoue, N. Bu, O. Fukuda, and H. Okumura, “Automated discrimination of tissue boundaries using ultrasound images of “ubiquitous echo”,” in Proceedings of the 29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society (EMBC '07), pp. 1330–1334, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Toomey, K. McCreesh, S. Leahy, and P. Jakeman, “Technical considerations for accurate measurement of subcutaneous adipose tissue thickness using B-mode ultrasound,” Ultrasound, vol. 19, no. 2, pp. 91–96, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. S. F. Hawes, A. Albert, M. J. R. Healy, and J. S. Garrow, “A comparison of soft-tissue radiography, reflected ultrasound, skinfold calipers, and thigh circumference for estimating the thickness of fat overlying the iliac crest and greater trochanter,” Proceedings of the Nutrition Society, vol. 31, no. 3, pp. 91A–92A, 1972.
  25. L. W. Weiss and F. C. Clark, “The use of B-mode ultrasound for measuring subcutaneous fat thickness on the upper arms,” Research Quarterly for Exercise and Sport, vol. 56, no. 1, pp. 77–81, 1985. View at Scopus
  26. G. A. Borkan, D. E. Hults, J. Cardarelli, and B. A. Burrows, “Comparison of ultrasound and skinfold measurements in assessment of subcutaneous and total fatness,” American Journal of Physical Anthropology, vol. 58, no. 3, pp. 307–313, 1982. View at Scopus
  27. M. T. Fanelli and R. J. Kuczmarski, “Ultrasound as an approach to assessing body composition,” American Journal of Clinical Nutrition, vol. 39, no. 5, pp. 703–709, 1984. View at Scopus
  28. E. M. Haymes, H. M. Lundegren, J. L. Loomis, and E. R. Buskirk, “Validity of the ultrasonic technique as a method of measuring subcutaneous adipose tissue,” Annals of Human Biology, vol. 3, no. 3, pp. 245–251, 1976. View at Scopus
  29. A. W. Sloan, “Estimation of body fat in young men,” Journal of Applied Physiology, vol. 23, no. 3, pp. 311–315, 1967. View at Scopus
  30. R. J. Kuczmarski, M. T. Fanelli, and G. G. Koch, “Ultrasonic assessment of body composition in obese adults: overcoming the limitations of the skinfold caliper,” American Journal of Clinical Nutrition, vol. 45, no. 4, pp. 717–724, 1987. View at Scopus
  31. S. Leahy, C. Toomey, K. McCreesh, C. O'Neill, and P. Jakeman, “Ultrasound measurement of subcutaneous adipose tissue thickness accurately predicts total and segmental body fat of young adults,” Ultrasound in Medicine and Biology, vol. 38, no. 1, pp. 28–34, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. P. A. Volz and S. M. Ostrove, “Evaluation of a portable ultrasonoscope in assessing the body composition of college-age women,” Medicine & Science in Sports & Exercise, vol. 16, no. 1, pp. 97–102, 1984. View at Scopus
  33. T. Abe, M. Kondo, Y. Kawakami, and T. Fukunaga, “Prediction equations for body composition of Japanese adults by B-mode ultrasound,” American Journal of Human Biology, vol. 6, no. 2, pp. 161–170, 1994.
  34. K. Saito, S. Nakaji, T. Umeda, T. Shimoyama, K. Sugawara, and Y. Yamamoto, “Development of predictive equations for body density of sumo wrestlers using B-mode ultrasound for the determination of subcutaneous fat thickness,” British Journal of Sports Medicine, vol. 37, no. 2, pp. 144–148, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Eston, R. Evans, and F. Fu, “Estimation of body composition in Chinese and British men by ultrasonographic assessment of segmental adipose tissue volume,” British Journal of Sports Medicine, vol. 28, no. 1, pp. 9–13, 1994. View at Scopus
  36. T. Midorikawa, M. Ohta, Y. Hikihara, S. Torii, M. G. Bemben, and S. Sakamoto, “Prediction and validation of total and regional fat mass by B-mode ultrasound in Japanese pre-pubertal children,” British Journal of Nutrition, vol. 106, no. 6, pp. 944–950, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Armellini, M. Zamboni, L. Rigo et al., “The contribution of sonography to the measurement of intra-abdominal fat,” Journal of Clinical Ultrasound, vol. 18, no. 7, pp. 563–567, 1990. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Armellini, M. Zamboni, L. Rigo et al., “Sonography detection of small intra-abdominal fat variations,” International Journal of Obesity, vol. 15, no. 12, pp. 847–852, 1991. View at Scopus
  39. F. Armellini, M. Zamboni, R. Robbi et al., “Total and intra-abdominal fat measurements by ultrasound and computerized tomography,” International Journal of Obesity, vol. 17, no. 4, pp. 209–214, 1993. View at Scopus
  40. R. Suzuki, S. Watanabe, Y. Hirai et al., “Abdominal wall fat index, estimated by ultrasonography, for assessment of the ratio of visceral fat to subcutaneous fat in the abdomen,” American Journal of Medicine, vol. 95, no. 3, pp. 309–314, 1993. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Abe, Y. Kawakami, M. Sugita, K. Yoshikawa, and T. Fukunaga, “Use of B-mode ultrasound for visceral fat mass evaluation: comparisons with magnetic resonance imaging,” Applied Human Science, vol. 14, no. 3, pp. 133–139, 1995. View at Scopus
  42. T. Abe, F. Tanaka, Y. Kawakami, K. Yoshikawa, and T. Fukunaga, “Total and segmental subcutaneous adipose tissue volume measured by ultrasound,” Medicine & Science in Sports & Exercise, vol. 28, no. 7, pp. 908–912, 1996. View at Publisher · View at Google Scholar · View at Scopus
  43. S. E. Taksali, S. Caprio, J. Dziura et al., “High visceral and low abdominal subcutaneous fat stores in the obese adolescent: a determinant of an adverse metabolic phenotype,” Diabetes, vol. 57, no. 2, pp. 367–371, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Bazzocchi, G. Filonzi, F. Ponti et al., “Accuracy, reproducibility and repeatability of ultrasonography in the assessment of abdominal adiposity,” Academic Radiology, vol. 18, no. 9, pp. 1133–1143, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Shuster, M. Patlas, J. H. Pinthus, and M. Mourtzakis, “The clinical importance of visceral adiposity: a critical review of methods for visceral adipose tissue analysis,” British Journal of Radiology, vol. 85, no. 1009, pp. 1–10, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. G. Iacobellis, “Imaging of visceral adipose tissue: an emerging diagnostic tool and therapeutic target,” Current Drug Targets, vol. 5, no. 4, pp. 345–353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. I. S. Vlachos, A. Hatziioannou, A. Perelas, and D. N. Perrea, “Sonographic assessment of regional adiposity,” American Journal of Roentgenology, vol. 189, no. 6, pp. 1545–1553, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Mayans, M. S. Cartwright, and F. O. Walker, “Neuromuscular ultrasonography: quantifying muscle and nerve measurements,” Physical Medicine and Rehabilitation Clinics of North America, vol. 23, no. 1, pp. 133–148, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Karjalainen, O. Riekkinen, J. Töyräs, H. Kröger, and J. Jurvelin, “Ultrasonic assessment of cortical bone thickness in vitro and in vivo,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 55, no. 10, pp. 2191–2197, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. T. R. Ackland, T. G. Lohman, J. Sundgot-Borgen et al., “Current status of body composition assessment in sport: review and position statement on behalf of the Ad Hoc research working group on body composition health and performance, under the auspices of the I.O.C. medical commission,” Sports Medicine, vol. 42, no. 3, pp. 227–249, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. T. G. Lohman, A. F. Roche, and R. Martorell, Anthropometric Standardization Reference Manual, Human Kinetics Books, Champaign, Ill, USA, 1988.
  52. S. Semiz, E. Özgören, and N. Sabir, “Comparison of ultrasonographic and anthropometric methods to assess body fat in childhood obesity,” International Journal of Obesity, vol. 31, no. 1, pp. 53–58, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Z. Pereira, J. S. Marchini, G. Carneiro, C. H. Arasaki, and M. T. Zanella, “Lean and fat mass loss in obese patients before and after Roux-en-Y gastric bypass: a new application for ultrasound technique,” Obesity Surgery, vol. 22, no. 4, pp. 597–601, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. J. L. Bartha, P. Marín-Segura, N. L. González-González, F. Wagner, M. Aguilar-Diosdado, and B. Hervias-Vivancos, “Ultrasound evaluation of visceral fat and metabolic risk factors during early pregnancy,” Obesity, vol. 15, no. 9, pp. 2233–2239, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Kinoshita and M. Itoh, “Longitudinal variance of fat mass deposition during pregnancy evaluated by ultrasonography: the ratio of visceral fat to subcutaneous fat in the abdomen,” Gynecologic and Obstetric Investigation, vol. 61, no. 2, pp. 115–118, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. E. A. McCarthy, B. J. G. Strauss, S. P. Walker, and M. Permezel, “Determination of maternal body composition in pregnancy and its relevance to perinatal outcomes,” Obstetrical and Gynecological Survey, vol. 59, no. 10, pp. 731–742, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. R. R. Emmons, C. E. Garber, C. M. Cirnigliaro, S. C. Kirshblum, A. M. Spungen, and W. A. Bauman, “Assessment of measures for abdominal adiposity in persons with spinal cord injury,” Ultrasound in Medicine and Biology, vol. 37, no. 5, pp. 734–741, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. I. T. Campbell, T. Watt, D. Withers et al., “Muscle thickness, measured with ultrasound, may be an indicator of lean tissue wasting in multiple organ failure in the presence of edema,” American Journal of Clinical Nutrition, vol. 62, no. 3, pp. 533–539, 1995. View at Scopus
  59. M. M. M. Guimarães, A. R. De Oliveira Jr., M. G. Penido et al., “Ultrasonographic measurement of intra-abdominal fat thickness in HIV-infected patients treated or not with antiretroviral drugs and its correlation to lipid and glycemic profiles,” Annals of Nutrition and Metabolism, vol. 51, no. 1, pp. 35–41, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. E. Fliers, H. P. Sauerwein, J. A. Romijn et al., “HIV-associated adipose redistribution syndrome as a selective autonomic neuropathy,” The Lancet, vol. 362, no. 9397, pp. 1758–1760, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. J. C. Pineau, L. Lalys, M. Pellegrini, and N. C. Battistini, “Body fat mass assessment: a comparison between an ultrasound-based device and a Discovery A model of DXA,” ISRN Obesity, vol. 2013, Article ID 462394, 5 pages, 2013. View at Publisher · View at Google Scholar
  62. A. S. Jackson and M. L. Pollock, “Practical assessment of body composition,” Physician and Sportsmedicine, vol. 13, no. 5, pp. 76–90, 1985. View at Scopus
  63. J. Lyon, R. Drew, and H. MacRae, “Comparison of skinfold thickness measures with ultrasound imaging to determine body composition,” in Proceedings of the 26th Annual Meeting of the Southwest Chapter of the American College of Sports Medicine, San Diego, Calif, USA, 2006.
  64. A. C. Utter and M. E. Hager, “Evaluation of ultrasound in assessing body composition of high school wrestlers,” Medicine & Science in Sports & Exercise, vol. 40, no. 5, pp. 943–949, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. L. Ulbricht, E. B. Neves, W. L. Ripka, and E. F. R. Romaneli, “Comparison between body fat measurements obtained by portable ultrasound and caliper in young adults,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '12), pp. 1952–1955, 2012.