About this Journal Submit a Manuscript Table of Contents
Journal of Obesity
Volume 2013 (2013), Article ID 291546, 11 pages
http://dx.doi.org/10.1155/2013/291546
Review Article

Obesity as a Major Risk Factor for Cancer

Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Oncology, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy

Received 18 December 2012; Revised 17 July 2013; Accepted 25 July 2013

Academic Editor: Francesco Saverio Papadia

Copyright © 2013 Giovanni De Pergola and Franco Silvestris. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. E. Calle, C. Rodriguez, K. Walker-Thurmond, and M. J. Thun, “Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults,” The New England Journal of Medicine, vol. 348, no. 17, pp. 1625–1638, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. E. E. Calle and R. Kaaks, “Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms,” Nature Reviews Cancer, vol. 4, no. 8, pp. 579–591, 2004. View at Scopus
  3. A. G. Renehan, M. Tyson, M. Egger, R. F. Heller, and M. Zwahlen, “Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies,” The Lancet, vol. 371, no. 9612, pp. 569–578, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. World Cancer Research Fund, Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective, American Institute for Cancer Research, Washington, DC, USA, 2nd edition, 2007.
  5. K. Y. Wolin, K. Carson, and G. A. Colditz, “Obesity and cancer,” Oncologist, vol. 15, no. 6, pp. 556–565, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. G. K. Reeves, K. Pirie, V. Beral, J. Green, E. Spencer, and D. Bull, “Cancer incidence and mortality in relation to body mass index in the million women study: Cohort study,” British Medical Journal, vol. 335, no. 7630, pp. 1134–1139, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. International Agency for Research on Cancer, “Weight control and physical activity,” in IARC Handbook of Cancer Prevention, H. Vainio and F. Bianchini, Eds., vol. 6, pp. 1–315, IARC Press, Lyon, France, 2002.
  8. C. M. Kitahara, E. A. Platz, L. E. B. Freeman et al., “Obesity and thyroid cancer risk among U.S. men and women: a pooled analysis of five prospective studies,” Cancer Epidemiology Biomarkers and Prevention, vol. 20, no. 3, pp. 464–472, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. M. A. Lichtman, “Obesity and the risk for a hematological malignancy: leukemia, lymphoma, or myeloma,” Oncologist, vol. 15, no. 10, pp. 1083–1101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. P. C. Enzinger and R. J. Mayer, “Esophageal cancer,” The New England Journal of Medicine, vol. 349, no. 23, pp. 2241–2252, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. B. C. Jacobson, S. C. Somers, C. S. Fuchs, C. P. Kelly, and C. A. Camargo Jr., “Body-mass index and symptoms of gastroesophageal reflux in women,” The New England Journal of Medicine, vol. 354, no. 22, pp. 2340–2348, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Ahn, A. Schatzkin, J. V. Lacey Jr. et al., “Adiposity, adult weight change, and postmenopausal breast cancer risk,” Archives of Internal Medicine, vol. 167, no. 19, pp. 2091–2102, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. S. E. Hankinson, G. A. Colditz, D. J. Hunter et al., “Reproductive factors and family history of breast cancer in relation to plasma estrogen and prolactin levels in postmenopausal women in the nurses' health study (United States),” Cancer Causes and Control, vol. 6, no. 3, pp. 217–224, 1995. View at Scopus
  14. L. Sjöström, A. Gummesson, C. D. Sjöström, et al., “Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial,” The Lancet Oncology, vol. 10, no. 7, pp. 653–662, 2009. View at Publisher · View at Google Scholar
  15. M. Jeffreys, G. D. Smith, R. M. Martin, S. Frankel, and D. Gunnell, “Childhood body mass index and later cancer risk: a 50-year follow-up of the Boyd Orr study,” International Journal of Cancer, vol. 112, no. 2, pp. 348–351, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Bjørge, A. Engeland, A. Tverdal, and G. D. Smith, “Body mass index in adolescence in relation to cause-specific mortality: a follow-up of 230,000 Norwegian adolescents,” American Journal of Epidemiology, vol. 168, no. 1, pp. 30–37, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. G. Renehan, I. Soerjomataram, M. Tyson et al., “Incident cancer burden attributable to excess body mass index in 30 European countries,” International Journal of Cancer, vol. 126, no. 3, pp. 692–702, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Harvie, L. Hooper, and A. H. Howell, “Central obesity and breast cancer risk: a systematic review,” Obesity Reviews, vol. 4, no. 3, pp. 157–173, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. A. A. Arslan, K. J. Helzlsouer, C. Kooperberg, et al., “Anthropometry, physical activity, and the risk of pancreatic cancer in the European prospective investigation into cancer and nutrition,” JAMA Internal Medicine, vol. 170, no. 9, pp. 791–802, 2010. View at Publisher · View at Google Scholar
  20. C. Friedenreich, A. Cust, P. H. Lahmann et al., “Anthropometric factors and risk of endometrial cancer: the European prospective investigation into cancer and nutrition,” Cancer Causes and Control, vol. 18, no. 4, pp. 399–413, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. Dai, Y.-C. Xu, and L. Niu, “Obesity and colorectal cancer risk: a meta-analysis of cohort studies,” World Journal of Gastroenterology, vol. 13, no. 31, pp. 4199–4206, 2007. View at Scopus
  22. A. A. Moghaddam, M. Woodward, and R. Huxley, “Obesity and risk of colorectal cancer: a meta-analysis of 31 studies with 70,000 events,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 12, pp. 2533–2547, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Steffen, M. B. Schulze, T. Pischon et al., “Anthropometry and esophageal cancer risk in the European prospective investigation into cancer and nutrition,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 7, pp. 2079–2089, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. K. A. Britton, J. M. Massaro, J. M. Murabito, B. E. Kreger, U. Hoffmann, and C. S. Fox, “Body fat distribution, incident cardiovascular disease, cancer, and all-cause mortality,” Journal of the American College of Cardiology, 2013. View at Publisher · View at Google Scholar
  25. C. Zhang, K. M. Rexrode, R. M. Van Dam, T. Y. Li, and F. B. Hu, “Abdominal obesity and the risk of all-cause, cardiovascular, and cancer mortality: sixteen years of follow-up in US women,” Circulation, vol. 117, no. 13, pp. 1658–1667, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. P. T. Campbell, M. Cotterchio, E. Dicks, P. Parfrey, S. Gallinger, and J. R. McLaughlin, “Excess body weight and colorectal cancer risk in Canada: associations in subgroups of clinically defined familial risk of cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 9, pp. 1735–1744, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Hosono, K. Matsuo, K. Hirose et al., “Weight gain during adulthood and body weight at age 20 are associated with the risk of endometrial cancer in japanese women,” Journal of Epidemiology, vol. 21, no. 6, pp. 466–473, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Pendyala, L. M. Neff, M. Suárez-Fariñas, and P. R. Holt, “Diet-induced weight loss reduces colorectal inflammation: implications for colorectal carcinogenesis,” American Journal of Clinical Nutrition, vol. 93, no. 2, pp. 234–242, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. J. R. Jaggers, X. Sui, S. P. Hooker et al., “Metabolic syndrome and risk of cancer mortality in men,” European Journal of Cancer, vol. 45, no. 10, pp. 1831–1838, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. J. R. Daling, K. E. Malone, D. R. Doody, L. G. Johnson, J. R. Gralow, and P. L. Porter, “Relation of body mass index to tumor markers and survival among young women with invasive ductal breast carcinoma,” Cancer, vol. 92, no. 4, pp. 720–729, 2001.
  31. J. J. Griggs, M. E. S. Sorbero, and G. H. Lyman, “Undertreatment of obese women receiving breast cancer chemotherapy,” Archives of Internal Medicine, vol. 165, no. 11, pp. 1267–1273, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Chen, X. Wang, J. Wang, Z. Yan, and J. Luo, “Excess body weight and the risk of primary liver cancer: an updated meta-analysis of prospective studies,” European Journal of Cancer, vol. 48, no. 14, pp. 2137–2145, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. S. R. Spindler, “Rapid and reversible induction of the longevity, anticancer and genomic effects of caloric restriction,” Mechanisms of Ageing and Development, vol. 126, no. 9, pp. 960–966, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. D. C. McMillan, N. Sattar, M. Lean, and C. S. McArdle, “Obesity and cancer,” British Medical Journal, vol. 333, no. 7578, pp. 1109–1111, 2006. View at Scopus
  35. R. Pallavi, M. Giorgio, and P. G. Pelicci, “Insights into the beneficial effect of caloric/dietary restriction for a healthy and prolonged life,” Frontiers in Physiology, vol. 3, no. 318, pp. 1–10, 2012. View at Publisher · View at Google Scholar
  36. I. Imayama, C. M. Ulrich, C. M. Alfano et al., “Effects of a caloric restriction weight loss diet and exercise on inflammatory biomarkers in overweight/obese postmenopausal women: a randomized controlled trial,” Cancer Research, vol. 72, no. 9, pp. 2314–2326, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. E. J. Fine, C. J. Segal-Isaacson, R. D. Feinman, et al., “Targeting insulin inhibition as a metabolic therapy in advanced cancer: a pilot safety and feasibility dietary trial in 10 patients,” Nutrition, vol. 28, no. 10, pp. 1028–1035, 2012. View at Publisher · View at Google Scholar
  38. Z. Lagunova, A. C. Porojnicu, W. B. Grant, Ø. Bruland, and J. E. Moan, “Obesity and increased risk of cancer: does decrease of serum 25-hydroxyvitamin D level with increasing body mass index explain some of the association?” Molecular Nutrition and Food Research, vol. 54, no. 8, pp. 1127–1133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. A. McTiernan, “Mechanisms linking physical activity with cancer,” Nature Reviews Cancer, vol. 8, no. 3, pp. 205–211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. L. H. Kushi, C. Doyle, M. McCullough et al., “American Cancer Society guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity,” CA: Cancer Journal for Clinicians, vol. 62, no. 1, pp. 30–67, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Tsugane and M. Inoue, “Insulin resistance and cancer: epidemiological evidence,” Cancer Science, vol. 101, no. 5, pp. 1073–1079, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. M. J. Gunter, D. R. Hoover, H. Yu et al., “Insulin, insulin-like growth factor-I, endogenous estradiol, and risk of colorectal cancer in postmenopausal women,” Cancer Research, vol. 68, no. 1, pp. 329–337, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. M. J. Gunter, D. R. Hoover, H. Yu, et al., “Insulin, insulin-like growth factor-I, and risk of breast cancer in post-menopausal women,” Journal of the National Cancer Institute, vol. 101, no. 1, pp. 48–60, 2009. View at Publisher · View at Google Scholar
  44. G. C. Kabat, M. Kim, B. J. Caan et al., “Repeated measures of serum glucose and insulin in relation to postmenopausal breast cancer,” International Journal of Cancer, vol. 125, no. 11, pp. 2704–2710, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. M. J. Gunter, D. R. Hoover, H. Yu et al., “A prospective evaluation of insulin and insulin-like growth factor-I as risk factors for endometrial cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 4, pp. 921–929, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Becker, L. Dossus, and R. Kaaks, “Obesity related hyperinsulinaemia and hyperglycaemia and cancer development,” Archives of Physiology and Biochemistry, vol. 115, no. 2, pp. 86–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Pisani, “Hyper-insulinaemia and cancer, meta-analyses of epidemiological studies,” Archives of Physiology and Biochemistry, vol. 114, no. 1, pp. 63–70, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. A. E. Cust, N. E. Allen, S. Rinaldi et al., “Serum levels of C-peptide, IGFBP-1 and IGFBP-2 and endometrial cancer risk; results from the European prospective investigation into cancer and nutrition,” International Journal of Cancer, vol. 120, no. 12, pp. 2656–2664, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Verheus, P. H. M. Peeters, S. Rinaldi et al., “Serum C-peptide levels and breast cancer risk: results from the European prospective investigation into cancer and nutrition (EPIC),” International Journal of Cancer, vol. 119, no. 3, pp. 659–667, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Ma, H. Li, E. Giovannucci et al., “Prediagnostic body-mass index, plasma C-peptide concentration, and prostate cancer-specific mortality in men with prostate cancer: a long-term survival analysis,” The Lancet Oncology, vol. 9, no. 11, pp. 1039–1047, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. F. Frasca, G. Pandini, L. Sciacca et al., “The role of insulin receptors and IGF-I receptors in cancer and other diseases,” Archives of Physiology and Biochemistry, vol. 114, no. 1, pp. 23–37, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. M. E. Cox, M. E. Gleave, M. Zakikhani et al., “Insulin receptor expression by human prostate cancers,” Prostate, vol. 69, no. 1, pp. 33–40, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. B. T.-Y. Chan and A. V. Lee, “Insulin receptor substrates (IRSs) and breast tumorigenesis,” Journal of Mammary Gland Biology and Neoplasia, vol. 13, no. 4, pp. 415–422, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. E. J. Gallagher and D. LeRoith, “The proliferating role of insulin and insulin-like growth factors in cancer,” Trends in Endocrinology and Metabolism, vol. 21, no. 10, pp. 610–618, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. A. G. Renehan, J. Frystyk, and A. Flyvbjerg, “Obesity and cancer risk: the role of the insulin-IGF axis,” Trends in Endocrinology and Metabolism, vol. 17, no. 8, pp. 328–336, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Héron-Milhavet and D. LeRoith, “Insulin-like growth factor I induces MDM2-dependent degradation of p53 via the p38 MAPK pathway in response to DNA damage,” Journal of Biological Chemistry, vol. 277, no. 18, pp. 15600–15606, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. Wu, S. Yakar, L. Zhao, L. Hennighausen, and D. LeRoith, “Circulating insulin-like growth factor-I levels regulate colon cancer growth and metastasis,” Cancer Research, vol. 62, no. 4, pp. 1030–1035, 2002. View at Scopus
  58. A. Canonici, W. Steelant, V. Rigot et al., “Insulin-like growth factor-I receptor, E-cadherin and αv integrin form a dynamic complex under the control of α-catenin,” International Journal of Cancer, vol. 122, no. 3, pp. 572–582, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. G. De Pergola, M. Zamboni, N. Pannacciulli, et al., “Divergent effects of short-term very low calorie diet (VLCD) on insulin-like growth factror-I (IGF-I) and insulin-like growth factor binding protein-3 (IGFBP-3) serum concentrations in premenopausal obese women,” Obesity Research, vol. 6, no. 6, pp. 408–415, 1998. View at Scopus
  60. R. Kaaks, S. Rinaldi, T. J. Key et al., “Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition,” Endocrine-Related Cancer, vol. 12, no. 4, pp. 1071–1082, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. K. A. Brown and E. R. Simpson, “Obesity and breast cancer: progress to understanding the relationship,” Cancer Research, vol. 70, no. 1, pp. 4–7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. R. Kaaks, F. Berrino, T. Key, et al., “Serum sex steroids in pre-menopausal women and breast cancer risk within the European prospective investigation into cancer and nutrition (EPIC),” Journal of the National Cancer Institute, vol. 97, no. 10, pp. 755–765, 2005.
  63. N. E. Allen, T. J. Key, L. Dossus et al., “Endogenous sex hormones and endometrial cancer risk in women in the European prospective investigation into cancer and nutrition (EPIC),” Endocrine-Related Cancer, vol. 15, no. 2, pp. 485–497, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. R. C. Travis and T. J. Key, “Oestrogen exposure and breast cancer risk,” Breast Cancer Research, vol. 5, no. 5, pp. 239–247, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. A. V. Lee, J. G. Jackson, J. L. Gooch et al., “Enhancement of insulin-like growth factor signaling in human breast cancer: estrogen regulation of insulin receptor substrate-1 expression in vitro and in vivo,” Molecular Endocrinology, vol. 13, no. 5, pp. 787–796, 1999. View at Scopus
  66. R. Kaaks, A. Lukanova, and M. S. Kurzer, “Obesity, endogenous hormones, and endometrial cancer risk: a synthetic review,” Cancer Epidemiology Biomarkers and Prevention, vol. 11, no. 12, pp. 1531–1543, 2002. View at Scopus
  67. C. A. Derby, S. Zilber, D. Brambilla, K. H. Morales, and J. B. McKinlay, “Body mass index, waist circumference and waist to hip ratio and change in sex steroid hormones: the Massachusetts male ageing study,” Clinical Endocrinology, vol. 65, no. 1, pp. 125–131, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. Y. Matsuzawa, “Therapy insight: adipocytokines in metabolic syndrome and related cardiovascular disease,” Nature Clinical Practice Cardiovascular Medicine, vol. 3, no. 1, pp. 35–42, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. M. J. Khandekar, P. Cohen, and B. M. Spiegelman, “Molecular mechanisms of cancer development in obesity,” Nature Reviews Cancer, vol. 11, no. 12, pp. 886–895, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. T. H. Mayi, M. Daoudi, B. Derudas, et al., “Human adipose tissue macrophages display activation of cancer-related pathways,” Journal of Biological Chemistry, vol. 287, pp. 21904–21913, 2012. View at Publisher · View at Google Scholar
  71. L. Vona-Davis and D. P. Rose, “Adipokines as endocrine, paracrine, and autocrine factors in breast cancer risk and progression,” Endocrine-Related Cancer, vol. 14, no. 2, pp. 189–206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Catalano, S. Marsico, C. Giordano et al., “Leptin enhances, via AP-1, expression of aromatase in the MCF-7 cell line,” Journal of Biological Chemistry, vol. 278, no. 31, pp. 28668–28676, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. X. Hu, S. C. Juneja, N. J. Maihle, and M. P. Cleary, “Leptin - a growth factor in normal and malignant breast cells and for normal mammary gland development,” Journal of the National Cancer Institute, vol. 94, no. 22, pp. 1704–1711, 2002. View at Scopus
  74. M. P. Cleary, F. C. Phillips, S. C. Getzin et al., “Genetically obese MMTV-TGF-α/Lepob Lepob female mice do not develop mammary tumors,” Breast Cancer Research and Treatment, vol. 77, no. 3, pp. 205–215, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. N. Stefanou, V. Papanikolaou, Y. Furukawa, Y. Nakamura, and A. Tsezou, “Leptin as a critical regulator of hepatocellular carcinoma development through modulation of human telomerase reverse transcriptase,” BMC Cancer, vol. 10, article 442, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. M.-N. Dieudonne, F. Machinal-Quelin, V. Serazin-Leroy, M.-C. Leneveu, R. Pecquery, and Y. Giudicelli, “Leptin mediates a proliferative response in human MCF7 breast cancer cells,” Biochemical and Biophysical Research Communications, vol. 293, no. 1, pp. 622–628, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. I. Barone, S. Catalano, L. Gelsomino et al., “Leptin mediates tumor-stromal interactions that promote the invasive growth of breast cancer cells,” Cancer Research, vol. 72, no. 6, pp. 1416–1427, 2012. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Cnop, P. J. Havel, K. M. Utzschneider et al., “Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex,” Diabetologia, vol. 46, no. 4, pp. 459–469, 2003. View at Scopus
  79. M. Fasshauer, J. Klein, S. Neumann, M. Eszlinger, and R. Paschke, “Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes,” Biochemical and Biophysical Research Communications, vol. 290, no. 3, pp. 1084–1089, 2002. View at Publisher · View at Google Scholar · View at Scopus
  80. M.-N. Dieudonne, M. Bussiere, E. Dos Santos, M.-C. Leneveu, Y. Giudicelli, and R. Pecquery, “Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells,” Biochemical and Biophysical Research Communications, vol. 345, no. 1, pp. 271–279, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. E. Brakenhielm, N. Veitonmaki, R. Cao, et al., “Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis,” Proceedings of the National Academy of Sciences of USA, vol. 101, no. 8, pp. 2476–2481, 2004. View at Publisher · View at Google Scholar
  82. G. J. Byrne, A. Ghellal, J. Iddon et al., “Serum soluble vascular cell adhesion molecule-1: role as a surrogate marker of angiogenesis,” Journal of the National Cancer Institute, vol. 92, no. 16, pp. 1329–1336, 2000. View at Scopus
  83. Y. Wang, K. S. Lam, and A. Xu, “Adiponectin as a negative regulator in obesity-related mammary carcinogenesis,” Cell Research, vol. 17, no. 4, pp. 280–282, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. Y. Miyoshi, T. Funahashi, S. Kihara et al., “Association of serum adiponectin levels with breast cancer risk,” Clinical Cancer Research, vol. 9, no. 15, pp. 5699–5704, 2003. View at Scopus
  85. C. Mantzoros, E. Petridou, N. Dessypris et al., “Adiponectin and breast cancer risk,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 3, pp. 1102–1107, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. S. S. Tworoger, A. H. Eliassen, T. Kelesidis et al., “Plasma adiponectin concentrations and risk of incident breast cancer,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 4, pp. 1510–1516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. L. Dal Maso, L. S. Augustin, A. Karalis et al., “Circulating adiponectin and endometrial cancer risk,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 3, pp. 1160–1163, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. A. E. Cust, R. Kaaks, C. Friedenreich, et al., “Plasma adiponectin levels and endometrial cancer risk in pre- and post-menopausal women,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 1, pp. 255–263, 2007.
  89. E. K. Wei, E. Giovannucci, C. S. Fuchs, W. C. Willett, and C. S. Mantzoros, “Low plasma adiponectin levels and risk of colorectal cancer in men: a prospective study,” Journal of the National Cancer Institute, vol. 97, no. 22, pp. 1688–1694, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. C. Grommes, G. E. Landreth, and M. T. Heneka, “Antineoplastic effects of peroxisome proliferator-activated receptor γ agonists,” Lancet Oncology, vol. 5, no. 7, pp. 419–429, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. J. C. Carter and F. C. Church, “Obesity and breast cancer: the roles of peroxisome proliferator-activated receptor-γ and plasminogen activator inhibitor-1,” PPAR Research, vol. 2009, Article ID 345320, 13 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. E. Maury, S. M. Brichard, Z. Pataky, A. Carpentier, A. Golay, and E. Bobbioni-Harsch, “Effect of obesity on growth-related oncogene factor-α, thrombopoietin, and tissue inhibitor metalloproteinase-1 serum levels,” Obesity, vol. 18, no. 8, pp. 1503–1509, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. B. R. Lane, J. Liu, P. J. Bock et al., “Interleukin-8 and growth-regulated oncogene alpha mediate angiogenesis in Kaposi's sarcoma,” Journal of Virology, vol. 76, no. 22, pp. 11570–11583, 2002. View at Publisher · View at Google Scholar · View at Scopus
  94. H. Haghnegahdar, J. Du, D. Wang et al., “The tumorigenic and angiogenic effects of MGSA/GRO proteins in melanoma,” Journal of Leukocyte Biology, vol. 67, no. 1, pp. 53–62, 2000. View at Scopus
  95. E. Lupia, O. Bosco, S. Bergerone et al., “Thrombopoietin contributes to enhanced platelet activation in patients with unstable angina,” Journal of the American College of Cardiology, vol. 48, no. 11, pp. 2195–2203, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. M. L. Slattery, K. Curtin, E. M. Poole et al., “Genetic variation in C-reactive protein in relation to colon and rectal cancer risk and survival,” International Journal of Cancer, vol. 128, no. 11, pp. 2726–2734, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. L. Dossus, S. Rinaldi, S. Becker et al., “Obesity, inflammatory markers, and endometrial cancer risk: a prospective case-control study,” Endocrine-Related Cancer, vol. 17, no. 4, pp. 1007–1019, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, “Cancer-related inflammation,” Nature, vol. 454, no. 7203, pp. 436–444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. R. C. M. Van Kruijsdijk, E. Van Der Wall, and F. L. J. Visseren, “Obesity and cancer: the role of dysfunctional adipose tissue,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 10, pp. 2569–2578, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. J. Ye and J. N. Keller, “Regulation of energy metabolism by inflammation: a feedback response in obesity and calorie restriction,” Aging, vol. 2, no. 6, pp. 361–368, 2010. View at Scopus
  101. M. S. Rodeheffer, K. Birsoy, and J. M. Friedman, “Identification of white adipocyte progenitor cells In vivo,” Cell, vol. 135, no. 2, pp. 240–249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. B. Dirat, L. Bochet, G. Escourrou, P. Valet, and C. Muller, “Unraveling the obesity and breast cancer links: a role for cancer-associated adipocytes?” Endocrine Development, vol. 19, pp. 45–52, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. C. F. Bellows, Y. Zhang, J. Chen, M. L. Frazier, and M. G. Kolonin, “Circulation of progenitor cells in obese and lean colorectal cancer patients,” Cancer Epidemiology Biomarkers and Prevention, vol. 20, no. 11, pp. 2461–2468, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. C. L. Amling, R. H. Riffenburgh, L. Sun et al., “Pathologic variables and recurrence rates as related to obesity and race in men with prostate cancer undergoing radical prostatectomy,” Journal of Clinical Oncology, vol. 22, no. 3, pp. 439–445, 2004. View at Publisher · View at Google Scholar · View at Scopus
  105. J. V. Silha, M. Krsek, P. Sucharda, and L. J. Murphy, “Angiogenic factors are elevated in overweight and obese individuals,” International Journal of Obesity, vol. 29, no. 11, pp. 1308–1314, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. J. Ye, Z. Gao, J. Yin, and Q. He, “Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice,” American Journal of Physiology, vol. 293, no. 4, pp. E1118–E1128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. P. Vaupel and M. Hoeckel, “Predictive power of the tumor oxygenation status,” Advances in Experimental Medicine and Biology, vol. 471, pp. 533–539, 1999. View at Scopus
  108. B. Bedogni, S. M. Welford, A. C. Kwan, J. Ranger-Moore, K. Saboda, and M. B. Powell, “Inhibition of phosphatidylinositol-3-kinase and mitogen-activated protein kinase kinase 1/2 prevents melanoma development and promotes melanoma regression in the transgenic TPRas mouse model,” Molecular Cancer Therapeutics, vol. 5, no. 12, pp. 3071–3077, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. A. B. Crujeiras, A. Díaz-Lagares, M.C. Carreira, M. Amil, and F. F. Casanueva, “Oxidative stress associated to dysfunctional adipose tissue: a potential link between obesity, type 2 diabetes mellitus and breast cancer,” Free Radical Research, vol. 47, no. 4, pp. 243–256, 2013. View at Publisher · View at Google Scholar
  110. A. Tenesa, H. Campbell, E. Theodoratou et al., “Common genetic variants at the MC4R locus are associated with obesity, but not with dietary energy intake or colorectal cancer in the Scottish population,” International Journal of Obesity, vol. 33, no. 2, pp. 284–288, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. J. Legler, T. Hamers, M. Van Eck van der Sluijs-van de Bor, et al., “The OBELIX project: early life exposure to endocrine disruptors and obesity,” The American Journal of Clinical Nutrition, vol. 94, supplement 6, pp. 1933S–1938S, 2009. View at Publisher · View at Google Scholar
  112. C. M. Moulin, L. V. Rizzo, and A. Halpern, “Effect of surgery-induced weight loss on immune function,” Expert Review of Gastroenterology and Hepatology, vol. 2, no. 5, pp. 617–619, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. L. Lynch, D. O'Shea, D. C. Winter, J. Geoghegan, D. G. Doherty, and C. O'Farrelly, “Invariant NKT cells and CD1d+ cells amass in human omentum and are depleted in patients with cancer and obesity,” European Journal of Immunology, vol. 39, no. 7, pp. 1893–1901, 2009. View at Publisher · View at Google Scholar · View at Scopus