About this Journal Submit a Manuscript Table of Contents
Journal of Obesity
Volume 2013 (2013), Article ID 312153, 7 pages
http://dx.doi.org/10.1155/2013/312153
Research Article

Maternal Docosahexaenoic Acid Increases Adiponectin and Normalizes IUGR-Induced Changes in Rat Adipose Deposition

1Division of Nutrition, University of Utah, Salt Lake City, UT 84158, USA
2Department of Pediatrics, University of Utah, Salt Lake City, UT 84158, USA
3Division of Neonatology, University of Utah, P.O. Box 581289, Salt Lake City, UT 84158, USA

Received 7 December 2012; Accepted 1 February 2013

Academic Editor: Nicola Abate

Copyright © 2013 Heidi N. Bagley et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. G. Ross and M. H. Beall, “Adult Sequelae of Intrauterine Growth Restriction,” Seminars in Perinatology, vol. 32, no. 3, pp. 213–218, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. E. C. Cottrell and S. E. Ozanne, “Early life programming of obesity and metabolic disease,” Physiology and Behavior, vol. 94, no. 1, pp. 17–28, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. J. C. K. Wells, S. Chomtho, and M. S. Fewtrell, “Programming of body composition by early growth and nutrition,” Proceedings of the Nutrition Society, vol. 66, no. 3, pp. 423–434, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Chakraborty, D. V. Joseph, M. J. G. Bankart, S. A. Petersen, and M. P. Wailoo, “Fetal growth restriction: relation to growth and obesity at the age of 9 years,” Archives of Disease in Childhood, vol. 92, no. 6, pp. F479–F483, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Jaquet, S. Deghmoun, D. Chevenne, D. Collin, P. Czernichow, and C. Lévy-Marchal, “Dynamic change in adiposity from fetal to postnatal life is involved in the metabolic syndrome associated with reduced fetal growth,” Diabetologia, vol. 48, no. 5, pp. 849–855, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. E. L. Rasmussen, C. Malis, C. B. Jensen et al., “Altered fat tissue distribution in young adult men who had low birth weight,” Diabetes Care, vol. 28, no. 1, pp. 151–153, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Ibáñez, A. Lopez-Bermejo, L. Suárez, M. V. Marcos, M. Díaz, and F. De Zegher, “Visceral adiposity without overweight in children born small for gestational age,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 6, pp. 2079–2083, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. C. S. Yajnik, H. G. Lubree, S. S. Rege et al., “Adiposity and hyperinsulinemia in Indians are present at birth,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 12, pp. 5575–5580, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. L. A. Joss-Moore, Y. Wang, M. S. Campbell et al., “Uteroplacental insufficiency increases visceral adiposity and visceral adipose PPARγ2 expression in male rat offspring prior to the onset of obesity,” Early Human Development, vol. 86, no. 3, pp. 179–185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Banga, R. Unal, P. Tripathi et al., “Adiponectin translation is increased by the PPARγ agonists pioglitazone and ω-3 fatty acids,” American Journal of Physiology, vol. 296, no. 3, pp. E480–E489, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Krey, O. Braissant, F. L'Horset et al., “Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay,” Molecular Endocrinology, vol. 11, no. 6, pp. 779–791, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Kim, E. Van De Wall, M. Laplante et al., “Obesity-associated improvements in metabolic profile through expansion of adipose tissue,” Journal of Clinical Investigation, vol. 117, no. 9, pp. 2621–2637, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. P. R. Devchand, A. Ijpenberg, B. Devesvergne, and W. Wahli, “PPARs: nuclear receptors for fatty acids, eicosanoids, and xenobiotics,” Advances in Experimental Medicine and Biology, vol. 469, pp. 231–236, 2000. View at Scopus
  14. P. Flachs, O. Horakova, P. Brauner et al., “Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce β-oxidation in white fat,” Diabetologia, vol. 48, no. 11, pp. 2365–2375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Stryjecki and D. M. Mutch, “Fatty acid-gene interactions, adipokines and obesity,” European Journal of Clinical Nutrition, vol. 65, no. 3, pp. 285–297, 2011. View at Publisher · View at Google Scholar
  16. T. Kadowaki and T. Yamauchi, “Adiponectin and adiponectin receptors,” Endocrine Reviews, vol. 26, no. 3, pp. 439–451, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. R. H. Lane, A. E. Tsirka, and E. M. Gruetzmacher, “Uteroplacental insufficiency alters cerebral mitochondrial gene expression and DNA in fetal and juvenile rats,” Pediatric Research, vol. 47, no. 6, pp. 792–797, 2000. View at Scopus
  18. E. S. Ogata, M. E. Bussey, and S. Finley, “Altered gas exchange, limited glucose and branched chain amino acids, and hypoinsulinism retard fetal growth in the rat,” Metabolism, vol. 35, no. 10, pp. 970–977, 1986. View at Scopus
  19. L. A. Joss-Moore, Y. Wang, M. L. Baack et al., “IUGR decreases PPARγ and SETD8 Expression in neonatal rat lung and these effects are ameliorated by maternal DHA supplementation,” Early Human Development, vol. 86, no. 12, pp. 785–791, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. APS, “Guiding principles for research involving animals and human beings,” American Journal of Physiology, vol. 283, no. 2, pp. R281–R283, 2002.
  21. M. Baserga, A. L. Bares, M. A. Hale et al., “Uteroplacental insufficiency affects kidney VEGF expression in a model of IUGR with compensatory glomerular hypertrophy and hypertension,” Early Human Development, vol. 85, no. 6, pp. 361–367, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Scopesi, S. Ciangherotti, P. B. Lantieri et al., “Maternal dietary PUFAs intake and human milk content relationships during the first month of lactation,” Clinical Nutrition, vol. 20, no. 5, pp. 393–397, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Amusquivar and E. Herrera, “Influence of changes in dietary fatty acids during pregnancy on placental and fetal fatty acid profile in the rat,” Biology of the Neonate, vol. 83, no. 2, pp. 136–145, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, “Image processing with ImageJ,” Biophotonics International, vol. 11, no. 7, pp. 36–42, 2004.
  25. L. A. Joss-Moore, Y. Wang, E. M. Ogata et al., “IUGR differentially alters MeCP2 expression and H3K9Me3 of the PPARγ gene in male and female rat lungs during alveolarization,” Birth Defects Research A, vol. 91, no. 8, pp. 672–681, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Ibáñez, G. Sebastiani, A. Lopez-Bermejo, M. Díaz, M. D. Gómez-Roig, and F. De Zegher, “Gender specificity of body adiposity and circulating adiponectin, visfatin, insulin, and insulin growth factor-I at term birth: relation to prenatal growth,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 7, pp. 2774–2778, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Rasmussen, M. Kark, S. Tholin, N. Karnehed, and P. Tynelius, “The Swedish young male twins study: a resource for longitudinal research on risk factors for obesity and cardiovascular diseases,” Twin Research and Human Genetics, vol. 9, no. 6, pp. 883–889, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Desai, J. Babu, and M. G. Ross, “Programmed metabolic syndrome: prenatal undernutrition and postweaning overnutrition,” American Journal of Physiology, vol. 293, no. 6, pp. R2306–R2314, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. J. A. Owens, P. Thavaneswaran, M. J. De Blasio, I. C. McMillen, J. S. Robinson, and K. L. Gatford, “Sex-specific effects of placental restriction on components of the metabolic syndrome in young adult sheep,” American Journal of Physiology, vol. 292, no. 6, pp. E1879–E1889, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Louey, M. L. Cock, and R. Harding, “Long term consequences of low birthweight on postnatal growth, adiposity and brain weight at maturity in sheep,” Journal of Reproduction and Development, vol. 51, no. 1, pp. 59–68, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Y. Choi, D. N. Tosh, A. Garg, R. Mansano, M. G. Ross, and M. Desai, “Gender-specific programmed hepatic lipid dysregulation in intrauterine growth-restricted offspring,” American Journal of Obstetrics and Gynecology, vol. 196, no. 5, pp. 477.e1–477.e7, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Medina-Gomez, S. L. Gray, L. Yetukuri et al., “PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism.,” PLoS Genetics, vol. 3, no. 4, article e64, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. T. T. Tran, Y. Yamamoto, S. Gesta, and C. R. Kahn, “Beneficial effects of subcutaneous fat transplantation on metabolism,” Cell Metabolism, vol. 7, no. 5, pp. 410–420, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. M. S. Reece, J. A. McGregor, K. G. Allen, and M. A. Harris, “Maternal and perinatal long-chain fatty acids: possible roles in preterm birth,” American Journal of Obstetrics and Gynecology, vol. 176, no. 4, pp. 907–914, 1997. View at Scopus
  35. M. Van Eijsden, G. Hornstra, M. F. Van Der Wal, T. G. M. Vrijkotte, and G. J. Bonsel, “Maternal n-3, n-6, and trans fatty acid profile early in pregnancy and term birth weight: a prospective cohort study,” American Journal of Clinical Nutrition, vol. 87, no. 4, pp. 887–895, 2008. View at Scopus
  36. S. F. Olsen, M. L. Osterdal, J. D. Salvig, T. Weber, A. Tabor, and N. J. Secher, “Duration of pregnancy in relation to fish oil supplementation and habitual fish intake: a randomised clinical trial with fish oil,” European Journal of Clinical Nutrition, vol. 61, no. 8, pp. 976–985, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. B. K. Itariu, M. Zeyda, E. E. Hochbrugger et al., “Long-chain n-3 PUFAs reduce adipose tissue and systemic inflammation in severely obese nondiabetic patients: a randomized controlled trial,” The American Journal of Clinical Nutrition, vol. 96, no. 5, pp. 1137–1149, 2012. View at Publisher · View at Google Scholar
  38. A. Neuhofer, M. Zeyda, D. Mascher et al., “Impaired local production of pro-resolving lipid mediators in obesity and 17-HDHA as a potential treatment for obesity-associated inflammation,” Diabetes, 2013. View at Publisher · View at Google Scholar
  39. P. K. Sharma, A. Bhansali, R. Sialy, S. Malhotra, and P. Pandhi, “Effects of pioglitazone and metformin on plasma adiponectin in newly detected type 2 diabetes mellitus,” Clinical Endocrinology, vol. 65, no. 6, pp. 722–728, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Tsuchida, T. Yamauchi, S. Takekawa et al., “Peroxisome proliferator-activated receptor (PPAR)α activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: comparison of activation of PPARα, PPARγ, and their combination,” Diabetes, vol. 54, no. 12, pp. 3358–3370, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. P. A. Kern, G. B. Di Gregorio, T. Lu, N. Rassouli, and G. Ranganathan, “Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-α expression,” Diabetes, vol. 52, no. 7, pp. 1779–1785, 2003. View at Scopus
  42. N. Rasouli and P. A. Kern, “Adipocytokines and the metabolic complications of obesity,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 11, supplement, pp. s64–s73, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. D. D. Briana and A. Malamitsi-Puchner, “Intrauterine growth restriction and adult disease: the role of adipocytokines,” European Journal of Endocrinology, vol. 160, no. 3, pp. 337–347, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. A. López-Bermejo, “Insulin resistance after prenatal growth restriction: is it mediated by adiponectin deficiency?” Clinical Endocrinology, vol. 64, no. 5, pp. 479–480, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Yamauchi and T. Kadowaki, “Physiological and pathophysiological roles of adiponectin and adiponectin receptors in the integrated regulation of metabolic and cardiovascular diseases,” International Journal of Obesity, vol. 32, no. 7, pp. S13–S18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Kim, J. Park, J. Park et al., “Comparison of body fat composition and serum adiponectin levels in diabetic obesity and non-diabetic obesity,” Obesity, vol. 14, no. 7, pp. 1164–1171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Perrini, L. Laviola, A. Cignarelli et al., “Fat depot-related differences in gene expression, adiponectin secretion, and insulin action and signalling in human adipocytes differentiated in vitro from precursor stromal cells,” Diabetologia, vol. 51, no. 1, pp. 155–164, 2008. View at Publisher · View at Google Scholar · View at Scopus