About this Journal Submit a Manuscript Table of Contents
Journal of Obesity
Volume 2013 (2013), Article ID 384167, 7 pages
http://dx.doi.org/10.1155/2013/384167
Research Article

Effects of Adiposity and Prader-Willi Syndrome on Postexercise Heart Rate Recovery

1Department of Kinesiology, California State University, Fullerton, 800 North State College Boulevard, KHS-236, Fullerton, CA 92831, USA
2Department of Pediatrics, University of Alberta, Edmonton, AB, Canada T6G 2R7

Received 26 October 2012; Revised 21 April 2013; Accepted 23 April 2013

Academic Editor: Dénés V. Molnár

Copyright © 2013 Diobel M. Castner et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. D. Mahon, C. S. Anderson, M. J. Hipp, and K. A. Hunt, “Heart rate recovery from submaximal exercise in boys and girls,” Medicine and Science in Sports and Exercise, vol. 35, no. 12, pp. 2093–2097, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. G. L. Pierpont, D. R. Stolpman, and C. C. Gornick, “Heart rate recovery post-exercise as an index of parasympathetic activity,” Journal of the Autonomic Nervous System, vol. 80, no. 3, pp. 169–174, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. C. R. Cole, E. H. Blackstone, F. J. Pashkow, C. E. Snader, and M. S. Lauer, “Heart-rate recovery immediately after exercise as a predictor of mortality,” The New England Journal of Medicine, vol. 341, no. 18, pp. 1351–1357, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Ohuchi, H. Suzuki, K. Yasuda, Y. Arakaki, S. Echigo, and T. Kamiya, “Heart rate recovery after exercise and cardiac autonomic nervous activity in children,” Pediatric Research, vol. 47, no. 3, pp. 329–335, 2000. View at Scopus
  5. N. Nagai and T. Moritani, “Effect of physical activity on autonomic nervous system function in lean and obese children,” International Journal of Obesity, vol. 28, no. 1, pp. 27–33, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Baraldi, D. M. Cooper, S. Zanconato, and Y. Armon, “Heart rate recovery from 1 minute of exercise in children and adults,” Pediatric Research, vol. 29, no. 6, pp. 575–579, 1991. View at Scopus
  7. M. Buchheit, G. P. Millet, A. Parisy, S. Pourchez, P. B. Laursen, and S. Ahmaidi, “Supramaximal training and postexercise parasympathetic reactivation in adolescents,” Medicine and Science in Sports and Exercise, vol. 40, no. 2, pp. 362–371, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. T. P. Singh, J. Rhodes, and K. Gauvreau, “Determinants of heart rate recovery following exercise in children,” Medicine and Science in Sports and Exercise, vol. 40, no. 4, pp. 601–605, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Dencker, P. Wollmer, M. K. Karlsson, C. Lindén, L. B. Andersen, and O. Thorsson, “Body fat, abdominal fat and body fat distribution related to cardiovascular risk factors in prepubertal children,” Acta Paediatrica, vol. 101, no. 8, pp. 852–857, 2012.
  10. P. Poirier, T. D. Giles, G. A. Bray et al., “Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on obesity and heart disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism,” Circulation, vol. 113, no. 6, pp. 898–918, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. U. Dimkpa and J. O. Oji, “Association of heart rate recovery after exercise with indices of obesity in healthy, non-obese adults,” European Journal of Applied Physiology, vol. 108, no. 4, pp. 695–699, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Dangardt, R. Volkmann, Y. Chen, W. Osika, S. Mårild, and P. Friberg, “Reduced cardiac vagal activity in obese children and adolescents,” Clinical Physiology and Functional Imaging, vol. 31, no. 2, pp. 108–113, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. M. G. Butler, J. M. Hanchett, and T. Thompson, “Clinical findings and natural history of Prader-Willi syndrome,” in Management of Prader-Willi Syndrome, M. G. Butler, P. D. K. Lee, and B. Y. Whitman, Eds., pp. 3–48, Springer, New York, NY, USA, 3rd edition, 2006.
  14. V. A. Holm, S. B. Cassidy, M. G. Butler et al., “Prader-Willi syndrome: consensus diagnostic criteria,” Pediatrics, vol. 91, no. 2, pp. 398–402, 1993. View at Scopus
  15. L. P. Richer, D. S. DeLorey, A. M. Sharma et al., “Autonomic vervous system (ANS) dysfunction in PWS and childhood obesity: preliminary findings,” in Proceedings of the 31st Prader-Willi Syndrome Association (USA) Annual National Conference, Orlando, FL, USA, 2011.
  16. C. K. Wade, R. E. de Meersman, M. Angulo, J. S. Lieberman, and J. A. Downey, “Prader-Willi syndrome fails to alter cardiac autonomic modulation,” Clinical Autonomic Research, vol. 10, no. 4, pp. 203–206, 2000.
  17. S. Patel, J. A. Harmer, G. Loughnan, M. R. Skilton, K. Steinbeck, and D. S. Celermajer, “Characteristics of cardiac and vascular structure and function in Prader-Willi syndrome,” Clinical Endocrinology, vol. 66, no. 6, pp. 771–777, 2007.
  18. F. J. DiMario Jr., B. Dunham, J. A. Burleson, J. Moskovitz, and S. B. Cassidy, “An evaluation of autonomic nervous system function in patients with Prader-Willi syndrome,” Pediatrics, vol. 93, no. 1, pp. 76–81, 1994. View at Scopus
  19. H. D. McCarthy, T. J. Cole, T. Fry, S. A. Jebb, and A. M. Prentice, “Body fat reference curves for children,” International Journal of Obesity, vol. 30, no. 4, pp. 598–602, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. C. Petersen, L. Crockett, M. Richards, and A. Boxer, “A self-report measure of pubertal status: reliability, validity, and initial norms,” Journal of Youth and Adolescence, vol. 17, no. 2, pp. 117–133, 1988. View at Publisher · View at Google Scholar · View at Scopus
  21. Centers for Disease Control, National Health and Nutrition Examination Survey (NHANES): Anthropometry Procedures Manual, N.C.F.H. Statistics, Atlanta, Ga, USA, 2007.
  22. American Academy of Pediatrics, “The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents,” Pediatrics, vol. 114, no. 2 supplement 4th Report, pp. 555–576, 2004.
  23. V. H. Heyward, Advanced Fitness Assessment and Exercise Prescription, Human Kinetics, Champaign, IL, USA, 6th edition, 2010.
  24. O. Bar-Or and T. Rowland, “Procedures for exercise testing in children,” in Pedaitric Exercise Medicine: From Physiologic Principles To Health Care Application, pp. 345–365, Human Kinetics, Champaign, IL, USA, 2004.
  25. S. M. Paridon, B. S. Alpert, S. R. Boas et al., “Clinical stress testing in the pediatric age group: a statement from the American Heart Association council on cardiovascular disease in the young, committee on atherosclerosis, hypertension, and obesity in youth,” Circulation, vol. 113, no. 15, pp. 1905–1920, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Eliakim, D. Nemet, F. Zaldivar et al., “Reduced exercise-associated response of the GH-IGF-I axis and catecholamines in obese children and adolescents,” Journal of Applied Physiology, vol. 100, no. 5, pp. 1630–1637, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. J. C. Sieverdes, X. Sui, and S. N. Blair, “Associations between physical activity and submaximal cardiorespiratory and pulmonary responses in men,” Journal of Sports Medicine & Doping Studies, vol. 1, no. 1, 2011.
  28. M. R. Carnethon, B. Sternfeld, K. Liu et al., “Correlates of heart rate recovery over 20 years in a healthy population sample,” Medicine and Science in Sports and Exercise, vol. 44, no. 2, pp. 273–279, 2012.
  29. C. M. Lee and A. Mendoza, “Dissociation of heart rate variability and heart rate recovery in well-trained athletes,” The European Journal of Applied Physiology, vol. 112, no. 7, pp. 2757–2766, 2012.
  30. K. Imai, H. Sato, M. Hori et al., “Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure,” Journal of the American College of Cardiology, vol. 24, no. 6, pp. 1529–1535, 1994. View at Scopus
  31. D. M. Prado, A. G. Silva, I. C. Trombetta et al., “Exercise training associated with diet improves heart rate recovery and cardiac autonomic nervous system activity in obese children,” International Journal of Sports Medicine, vol. 31, no. 12, pp. 860–865, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. M. G. Butler, M. F. Theodoro, D. C. Bittel, and J. E. Donnelly, “Energy expenditure and physical activity in Prader-Willi syndrome: comparison with obese subjects,” American Journal of Medical Genetics A, vol. 143, no. 5, pp. 449–459, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. E. G. A. H. van Mil, K. R. Westerterp, W. J. M. Gerver, W. D. van Marken Lichtenbelt, A. D. M. Kester, and W. H. M. Saris, “Body composition in Prader-Willi syndrome compared with nonsyndromal obesityrelationship to physical activity and growth hormone function,” Journal of Pediatrics, vol. 139, no. 5, pp. 708–714, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Capodaglio, L. Vismara, F. Menegoni, G. Baccalaro, M. Galli, and G. Grugni, “Strength characterization of knee flexor and extensor muscles in Prader-Willi and obese patients,” BMC Musculoskeletal Disorders, vol. 10, article 47, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Reus, M. Zwarts, L. A. van Vlimmeren, M. A. Willemsen, B. J. Otten, and M. W. G. Nijhuis-van der Sanden, “Motor problems in Prader-Willi syndrome: a systematic review on body composition and neuromuscular functioning,” Neuroscience and Biobehavioral Reviews, vol. 35, no. 3, pp. 956–969, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. C. D. Lee, S. N. Blair, and A. S. Jackson, “Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men,” American Journal of Clinical Nutrition, vol. 69, no. 3, pp. 373–380, 1999. View at Scopus
  37. A. M. Haqq, D. S. DeLorey, A. M. Sharma et al., “Autonomic nervous system dysfunction in obesity and Prader-Willi syndrome: current evidence and implications for future obesity therapies,” Clinical Obesity, vol. 1, no. 4–6, pp. 175–183, 2012.
  38. A. R. Galeev, L. N. Igisheva, and E. M. Kazin, “Heart rate variability in healthy six- to sixteen year old children,” Fiziologiia cheloveka, vol. 28, no. 4, pp. 54–58, 2002. View at Scopus
  39. P. Burman, E. M. Ritzén, and A. C. Lindgren, “Endocrine dysfunction in Prader-Willi syndrome: a review with special reference to GH,” Endocrine Reviews, vol. 22, no. 6, pp. 787–799, 2001. View at Publisher · View at Google Scholar · View at Scopus