About this Journal Submit a Manuscript Table of Contents
Journal of Obesity
Volume 2013 (2013), Article ID 393192, 8 pages
http://dx.doi.org/10.1155/2013/393192
Review Article

Adipose Tissue Dysfunction in Nascent Metabolic Syndrome

1Department of Pediatrics, Vanderbilt University, Nashville, TN 37232-9170, USA
2Laboratory for Atherosclerosis and Metabolic Research, University of California Davis Medical Center, Sacramento, CA 95817-2218, USA
3VA Medical Center, Mather, CA 95655-4200, USA

Received 26 January 2013; Accepted 14 February 2013

Academic Editor: Anne E. Sumner

Copyright © 2013 Andrew A. Bremer and Ishwarlal Jialal. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. M. Reaven, “The insulin resistance syndrome: definition and dietary approaches to treatment,” Annual Review of Nutrition, vol. 25, pp. 391–406, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. R. H. Eckel, S. M. Grundy, and P. Z. Zimmet, “The metabolic syndrome,” Lancet, vol. 365, no. 9468, pp. 1415–1428, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. S. M. Haffner and H. B. Cassells, “Metabolic syndrome—a new risk factor of coronary heart disease?” Diabetes, Obesity and Metabolism, vol. 5, no. 6, pp. 359–370, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. M. A. Cornier, D. Dabelea, T. L. Hernandez et al., “The metabolic syndrome,” Endocrine Reviews, vol. 29, no. 7, pp. 777–822, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. I. Cleeman, “Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III),” Journal of the American Medical Association, vol. 285, no. 19, pp. 2486–2497, 2001. View at Scopus
  6. A. Mozumdar and G. Liguori, “Persistent increase of prevalence of metabolic syndrome among U.S. adults: NHANES III to NHANES 1999–2006,” Diabetes Care, vol. 34, no. 1, pp. 216–219, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. C. M. Alexander, P. B. Landsman, S. M. Teutsch, and S. M. Haffner, “NCEP-defined metabolic syndrome, diabetes, and prevalence of coronary heart disease among NHANES III participants age 50 years and older,” Diabetes, vol. 52, no. 5, pp. 1210–1214, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. K. G. M. M. Alberti, R. H. Eckel, S. M. Grundy et al., “Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International atherosclerosis society; And international association for the study of obesity,” Circulation, vol. 120, no. 16, pp. 1640–1645, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Schmidt and G. M. Bergstrom, “The metabolic syndrome predicts cardiovascular events: results of a 13-year follow-up in initially healthy 58-year-old men,” Metabolic Syndrome and Related Disordoers, vol. 10, no. 6, pp. 394–399, 2012.
  10. H. M. Lakka, D. E. Laaksonen, T. A. Lakka et al., “The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men,” Journal of the American Medical Association, vol. 288, no. 21, pp. 2709–2716, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. R. L. Hanson, G. Imperatore, P. H. Bennett, and W. C. Knowler, “Components of the “metabolic syndrome” and incidence of type 2 diabetes,” Diabetes, vol. 51, no. 10, pp. 3120–3127, 2002. View at Scopus
  12. G. Assmann, J. R. Nofer, and H. Schulte, “Cardiovascular risk assessment in metabolic syndrome: view from PROCAM,” Endocrinology and Metabolism Clinics of North America, vol. 33, no. 2, pp. 377–392, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Devaraj, R.S. Rosenson, and I. Jialal, “Metabolic syndrome: an appraisal of the pro-inflammatory and procoagulant status,” Endocrinology and Metabolism Clinics of North America, vol. 33, pp. 431–453, 2004. View at Publisher · View at Google Scholar
  14. S. Devaraj, D. Siegel, and I. Jialal, “Inflammation and metabolic syndrome,” in The Metabolic Syndrome, C. D. Byrne and S.H. Wild, Eds., ch 13, pp. 210–228, Wiley-Blackwell, 2nd edition, 2011.
  15. J. M. Northcott, A. Yeganeh, C. G. Taylor, P. Zahradka, and J. T. Wigle, “Adipokines and the cardiovascular system: mechanisms mediating health and disease,” Canadian Journal of Physiology and Pharmacology, vol. 90, no. 8, pp. 1029–1059, 2012.
  16. M. Bluher, “Clinical relevance of adipokines,” Diabetes and Metabolism Journal, vol. 36, no. 5, pp. 317–327, 2012.
  17. I. Jialal, S. Devaraj, B. A. Huet, X. Chen, and H. Kaur, “Increased cellular and circulating biomarkers of oxidative stress in nascent metabolic syndrome,” Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 10, pp. E1844–E1850, 2012.
  18. G. S. Hotamisligil, “Inflammation and metabolic disorders,” Nature, vol. 444, no. 7121, pp. 860–867, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Monteiro and I. Azevedo, “Chronic inflammation in obesity and the metabolic syndrome,” Mediators of Inflammation, vol. 2010, Article ID 289645, 10 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. J. P. Despres, S. Lemieux, B. Lamarche et al., “The insulin resistance dyslipidemic syndrome: contribution of visceral obesity and therapeutic implications,” International Journal of Obesity, vol. 19, no. 1, supplement, pp. S76–S86, 1995. View at Scopus
  21. J. P. Després, “Is visceral obesity the cause of the metabolic syndrome?” Annals of Medicine, vol. 38, no. 1, pp. 52–63, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. C. S. Fox, J. M. Massaro, U. Hoffmann et al., “Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the framingham heart study,” Circulation, vol. 116, no. 1, pp. 39–48, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. S. A. Porter, J. M. Massaro, U. Hoffmann, R. S. Vasan, C. J. O'Donnel, and C. S. Fox, “Abdominal subcutaneous adipose tissue: a protective fat depot?” Diabetes Care, vol. 32, no. 6, pp. 1068–1075, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. B. H. Goodpaster, F. L. Thaete, J. A. Simoneau, and D. E. Kelley, “Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat,” Diabetes, vol. 46, no. 10, pp. 1579–1585, 1997. View at Scopus
  25. N. Abate, A. Garg, R. M. Peshock, J. Stray-Gundersen, and S. M. Grundy, “Relationships of generalized and regional adiposity to insulin sensitivity in men,” Journal of Clinical Investigation, vol. 96, no. 1, pp. 88–98, 1995. View at Scopus
  26. N. Abate, A. Garg, R. M. Peshock, J. Stray-Gundersen, B. Adams-Huet, and S. M. Grundy, “Relationship of generalized and regional adiposity to insulin sensitivity in men with NIDDM,” Diabetes, vol. 45, no. 12, pp. 1684–1693, 1996. View at Scopus
  27. I. Ferreira, R. M. A. Henry, J. W. R. Twisk, W. Van Mechelen, H. C. G. Kemper, and C. D. A. Stehouwer, “The metabolic syndrome, cardiopulmonary fitness, and subcutaneous trunk fat as independent determinants of arterial stiffness. The Amsterdam Growth and Health Longitudinal Study,” Archives of Internal Medicine, vol. 165, no. 8, pp. 875–882, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. U. Salmenniemi, E. Ruotsalainen, J. Pihlajamäki et al., “Multiple abnormalities in glucose and energy metabolism and coordinated changes in levels of adiponectin, cytokines, and adhesion molecules in subjects with metabolic syndrome,” Circulation, vol. 110, no. 25, pp. 3842–3848, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. D. B. Carr, K. M. Utzschneider, R. L. Hull et al., “Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome,” Diabetes, vol. 53, no. 8, pp. 2087–2094, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. C. M. Apovian, S. Bigornia, M. Mott et al., “Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 9, pp. 1654–1659, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. A. A. Bremer, S. Devaraj, A. Afify, and I. Jialal, “Adipose tissue dysregulation in patients with metabolic syndrome,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 11, pp. E1782–E1788, 2011.
  32. S. Devaraj, G. Jialal, T. Cook, D. Siegel, and I. Jialal, “Low vitamin D levels in Northern American adults with the metabolic syndrome,” Hormone and Metabolic Research, vol. 43, no. 1, pp. 72–74, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. E. K. Anderson, D. A. Gutierrez, and A. H. Hasty, “Adipose tissue recruitment of leukocytes,” Current Opinion in Lipidology, vol. 21, no. 3, pp. 172–177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. B. K. Surmi and A. H. Hasty, “Macrophage infiltration into adipose tissue: initiation, propagation and remodeling,” Future Lipidology, vol. 3, no. 5, pp. 545–556, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. I. S. Wood, F. P. De Heredia, B. Wang, and P. Trayhurn, “Cellular hypoxia and adipose tissue dysfunction in obesity,” Proceedings of the Nutrition Society, vol. 68, no. 4, pp. 370–377, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Gormez, A. Demirkan, F. Atalar et al., “Adipose tissue gene expression of adiponectin, tumor necrosis factor-α and leptin in metabolic syndrome patients with coronary artery disease,” Internal Medicine, vol. 50, no. 8, pp. 805–810, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. H. S. Sacks, J. N. Fain, P. Cheema et al., “Inflammatory genes in epicardial fat contiguous with coronary atherosclerosis in the metabolic syndrome and type 2 diabetes: changes associated with pioglitazone,” Diabetes Care, vol. 34, no. 3, pp. 730–733, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. G. R. Hajer, T. W. Van Haeften, and F. L. J. Visseren, “Adipose tissue dysfunction in obesity, diabetes, and vascular diseases,” European Heart Journal, vol. 29, no. 24, pp. 2959–2971, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Fantuzzi and T. Mazzone, “Adipose tissue and atherosclerosis: exploring the connection,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 5, pp. 996–1003, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Deng and P. E. Scherer, “Adipokines as novel biomarkers and regulators of the metabolic syndrome,” Annals of the New York Academy of Sciences, vol. 1212, pp. E1–E19, 2010. View at Scopus
  41. N. Ouchi, S. Kihara, T. Funahashi et al., “Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue,” Circulation, vol. 107, no. 5, pp. 671–674, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. S. K. Venugopal, S. Devaraj, and I. Jialal, “Macrophage conditioned medium induces the expression of C-reactive protein in human aortic endothelial cells: potential for paracrine/autocrine effects,” American Journal of Pathology, vol. 166, no. 4, pp. 1265–1271, 2005. View at Scopus
  43. I. Huang-Doran, A. Sleigh, J. J. Rochford, S. O'Rahilly, and D. B. Savage, “Lipodystrophy: metabolic insights from a rare disorder,” Journal of Endocrinology, vol. 207, no. 3, pp. 245–255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Mitchell, D. Couton, J. P. Couty et al., “Dual role of CCR2 in the constitution and the resolution of liver fibrosis in mice,” American Journal of Pathology, vol. 174, no. 5, pp. 1766–1775, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Ito, T. Suganami, A. Yamauchi et al., “Role of CC chemokine receptor 2 in bone marrow cells in the recruitment of macrophages into obese adipose tissue,” Journal of Biological Chemistry, vol. 283, no. 51, pp. 35715–35723, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. M. C. Ernst and C. J. Sinal, “Chemerin: at the crossroads of inflammation and obesity,” Trends in Endocrinology and Metabolism, vol. 21, no. 11, pp. 660–667, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Bozaoglu, D. Segal, K. A. Shields et al., “Chemerin is associated with metabolic syndrome phenotypes in a Mexican-American population,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 8, pp. 3085–3088, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Sell, A. Divoux, C. Poitou et al., “Chemerin correlates with markers for fatty liver in morbidly obese patients and strongly decreases after weight loss induced by bariatric surgery,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 6, pp. 2892–2896, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Sell, J. Laurencikiene, A. Taube et al., “Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells,” Diabetes, vol. 58, no. 12, pp. 2731–2740, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Stejskal, M. Karpisek, Z. Hanulova, and M. Svestak, “Chemerin is an independent marker of the metabolic syndrome in a Caucasian population—a pilot study,” Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, vol. 152, no. 2, pp. 217–221, 2008. View at Scopus
  51. S. H. Chu, M. K. Lee, K. Y. Ahn, et al., “Chemerin and adiponectin contribute reciprocally to metabolic syndrome,” PLoS ONE, vol. 7, no. 4, Article ID e34710, 2012.
  52. B. Dong, W. Ji, and Y. Zhang, “Elevated serum chemerin levels are associated with the Presence of coronary artery disease in patients with metabolic syndrome,” Internal Medicine, vol. 50, no. 10, pp. 1093–1097, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Weigert, M. Neumeier, J. Wanninger et al., “Systemic chemerin is related to inflammation rather than obesity in type 2 diabetes,” Clinical Endocrinology, vol. 72, no. 3, pp. 342–348, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Schäffler, M. Neumeier, H. Herfarth, A. Fürst, J. Schölmerich, and C. Büchler, “Genomic structure of human omentin, a new adipocytokine expressed in omental adipose tissue,” Biochimica et Biophysica Acta, vol. 1732, no. 1–3, pp. 96–102, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. B. K. Tan, R. Adya, and H. S. Randeva, “Omentin: a novel link between inflammation, diabesity, and cardiovascular disease,” Trends in Cardiovascular Medicine, vol. 20, no. 5, pp. 143–148, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. C. M. De Souza Batista, R. Z. Yang, M. J. Lee et al., “Omentin plasma levels and gene expression are decreased in obesity,” Diabetes, vol. 56, no. 6, pp. 1655–1661, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. F. J. Shang, J. P. Wang, X. T. Liu, et al., “Serum omentin-1 levels are inversely associated with the presence and severity of coronary artery disease in patients with metabolic syndrome,” Biomarkers, vol. 16, no. 8, pp. 657–662, 2011.
  58. E. Gremese and G. Ferraccioli, “The metabolic syndrome: the crossroads between rheumatoid arthritis and cardiovascular risk,” Autoimmunity Reviews, vol. 10, no. 10, pp. 582–589, 2011.
  59. I. Jialal, S. Devaraj, H. Kaur, B. A. Huet, and A. A. Bremer, “Increased chemerin and decreased omentin-1 in both adipose tissue and plasma in nascent metabolic syndrome,” Journal of Clinical Endocrinology and Metabolism, 2013.
  60. I. Jialal, B. A. Huet, H. Kaur, A. Chien, and S. Devaraj, “Increased toll-like receptor activity in patients with metabolic syndrome,” Diabetes Care, vol. 35, no. 4, pp. 900–904, 2012.