About this Journal Submit a Manuscript Table of Contents
Journal of Obesity
Volume 2013 (2013), Article ID 396416, 12 pages
http://dx.doi.org/10.1155/2013/396416
Review Article

Genetics of Obesity and Type 2 Diabetes in African Americans

1Division of Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
2Division of Human Genetics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
3Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
4Center for Applied Genomics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA

Received 16 November 2012; Accepted 13 February 2013

Academic Editor: Sanjay Kinra

Copyright © 2013 Shana McCormack and Struan F. A. Grant. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. R. Williams, “Race and health: basic questions, emerging directions,” Annals of Epidemiology, vol. 7, no. 5, pp. 322–333, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. S. E. Ali-Khan, T. Krakowski, R. Tahir, and A. S. Daar, “The use of race, ethnicity and ancestry in human genetic research,” The HUGO Journal, vol. 5, no. 1–4, pp. 47–63, 2011.
  3. S. Olson, K. Berg, V. Bonham et al., “The use of racial, ethnic, and ancestral categories in human genetics research,” American Journal of Human Genetics, vol. 77, no. 4, pp. 519–532, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. S. M. Fullerton, J. H. Yu, J. Crouch, K. Fryer-Edwards, and W. Burke, “Population description and its role in the interpretation of genetic association,” Human Genetics, vol. 127, no. 5, pp. 563–572, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. R. S. Cooper, B. Tayo, and X. Zhu, “Genome-wide association studies: implications for multiethnic samples,” Human Molecular Genetics, vol. 17, R2, pp. R151–R155, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. P. Morris, “Transethnic meta-analysis of genomewide association studies,” Genetic Epidemiology, vol. 35, no. 8, pp. 809–822, 2011.
  7. J. Fu, E. A. Festen, and C. Wijmenga, “Multi-ethnic studies in complex traits,” Human Molecular Genetics, vol. 20, R2, pp. R206–R213, 2011. View at Publisher · View at Google Scholar
  8. N. A. Rosenberg, L. Huang, E. M. Jewett, Z. A. Szpiech, I. Jankovic, and M. Boehnke, “Genome-wide association studies in diverse populations,” Nature Reviews Genetics, vol. 11, no. 5, pp. 356–366, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Y. Teo, K. S. Small, and D. P. Kwiatkowski, “Methodological challenges of genome-wide association analysis in Africa,” Nature Reviews Genetics, vol. 11, no. 2, pp. 149–160, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. W. Foster and R. R. Sharp, “Beyond race: towards a whole-genome perspective on human populations and genetic variation,” Nature Reviews Genetics, vol. 5, no. 10, pp. 790–796, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. S. A. Tishkoff, F. A. Reed, F. R. Friedlaender et al., “The genetic structure and history of Africans and African Americans,” Science, vol. 324, no. 5930, pp. 1035–1044, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. D. Johnson, R. E. Handsaker, S. L. Pulit, M. M. Nizzari, C. J. O'Donnell, and P. I. W. De Bakker, “SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap,” Bioinformatics, vol. 24, no. 24, pp. 2938–2939, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Bollepalli, L. M. Dolan, R. Deka, and L. J. Martin, “Association of FTO gene variants with adiposity in African-American adolescents,” Obesity, vol. 18, no. 10, pp. 1959–1963, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Liu, H. Zhu, V. Lagou et al., “FTO variant rs9939609 is associated with body mass index and waist circumference, but not with energy intake or physical activity in European- and African-American youth,” BMC Medical Genetics, vol. 11, no. 1, article 57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. R. Wing, J. Ziegler, C. D. Langefeld et al., “Analysis of FTO gene variants with measures of obesity and glucose homeostasis in the IRAS Family Study,” Human Genetics, vol. 125, no. 5-6, pp. 615–626, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. R. Wing, J. M. Ziegler, C. D. Langefeld et al., “Analysis of FTO gene variants with obesity and glucose homeostasis measures in the multiethnic Insulin Resistance Atherosclerosis Study cohort,” International Journal of Obesity, vol. 35, no. 9, pp. 1173–1182, 2011.
  17. Z. Lombard, N. J. Crowther, L. van der Merwe, P. Pitamber, S. A. Norris, and M. Ramsay, “Appetite regulation genes are associated with body mass index in black South African adolescents: a genetic association study,” BMJ Open, vol. 2, no. 3, 2012.
  18. M. T. Hassanein, H. N. Lyon, T. T. Nguyen et al., “Fine mapping of the association with obesity at the FTO locus in African-derived populations,” Human Molecular Genetics, vol. 19, no. 14, Article ID ddq178, pp. 2907–2916, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Adeyemo, G. Chen, J. Zhou et al., “FTO genetic variation and association with obesity in West Africans and African Americans,” Diabetes, vol. 59, no. 6, pp. 1549–1554, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. S. F. A. Grant, M. Li, J. P. Bradfield et al., “Association analysis of the FTO gene with obesity in children of Caucasian and African ancestry reveals a common tagging SNP,” PLoS ONE, vol. 3, no. 3, Article ID e1746, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. M. Hester, M. R. Wing, J. Li et al., “Implication of European-derived adiposity loci in African Americans,” International Journal of Obesity, vol. 36, no. 3, pp. 465–473, 2012.
  22. A. Scuteri, S. Sanna, W. M. Chen et al., “Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits,” PLoS Genetics, vol. 3, no. 7, article e115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. S. A. Tishkoff and K. K. Kidd, “Implications of biogeography of human populations for ‘race’ and medicine,” Nature Genetics, vol. 36, no. 11, pp. S21–S27, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Asimit, A. Day-Williams, L. Zgaga, I. Rudan, V. Boraska, and E. Zeggini, “An evaluation of different meta-analysis approaches in the presence of allelic heterogeneity,” European Journal of Human Genetics, vol. 20, no. 6, pp. 709–712, 2012.
  25. X. Wang, X. Liu, X. Sim et al., “A statistical method for region-based meta-analysis of genome-wide association studies in genetically diverse populations,” European Journal of Human Genetics, vol. 20, no. 4, pp. 469–475, 2012.
  26. L. Yun, C. Willer, S. Sanna, and G. Abecasis, “Genotype imputation,” Annual Review of Genomics and Human Genetics, vol. 10, pp. 387–406, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Huang, M. Jakobsson, T. J. Pemberton et al., “Haplotype variation and genotype imputation in African populations,” Genetic Epidemiology, vol. 35, no. 8, pp. 766–780, 2011.
  28. G. R. Abecasis, A. Auton, L. D. Brooks et al., “An integrated map of genetic variation from 1,092 human genomes,” Nature, vol. 491, no. 7422, pp. 56–65, 2012.
  29. X. Gao, T. Haritunians, P. Marjoram et al., “Genotype imputation for latinos using the HapMap and 1000 genomes project reference panels,” Frontiers in Genetics, vol. 3, article 117, 2012. View at Publisher · View at Google Scholar
  30. S. H. Golden, A. Brown, J. A. Cauley et al., “Health disparities in endocrine disorders: biological, clinical, and nonclinical factors—an endocrine society scientific statement,” The Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 9, pp. E1579–E1639, 2012.
  31. J. Marchini, L. R. Cardon, M. S. Phillips, and P. Donnelly, “The effects of human population structure on large genetic association studies,” Nature Genetics, vol. 36, no. 5, pp. 512–517, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. A. L. Price, N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick, and D. Reich, “Principal components analysis corrects for stratification in genome-wide association studies,” Nature Genetics, vol. 38, no. 8, pp. 904–909, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Y. Cheng, D. Reich, J. Coresh et al., “Admixture mapping of obesity-related traits in african americans: the atherosclerosis risk in communities (ARIC) study,” Obesity, vol. 18, no. 3, pp. 563–572, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. M. H. Park, C. Falconer, R. M. Viner, and S. Kinra, “The impact of childhood obesity on morbidity and mortality in adulthood: a systematic review,” Obesity Reviews, vol. 13, no. 11, pp. 985–1000, 2012.
  35. A. M. Prentice and S. A. Jebb, “Beyond body mass index,” Obesity Reviews, vol. 2, no. 3, pp. 141–147, 2001. View at Scopus
  36. P. Deurenberg, M. Yap, and W. A. Van Staveren, “Body mass index and percent body fat: a meta analysis among different ethnic groups,” International Journal of Obesity, vol. 22, no. 12, pp. 1164–1171, 1998. View at Scopus
  37. K. A. Meyer, E. W. Demerath, S. Friend, P. J. Hannan, and D. Neumark-Sztainer, “Body fat is differentially related to body mass index in U.S.-born African-American and East African immigrant girls,” American Journal of Human Biology, vol. 23, no. 5, pp. 720–723, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. D. A. Boggs, L. Rosenberg, Y. C. Cozier et al., “General and abdominal obesity and risk of death among black women,” The New England Journal of Medicine, vol. 365, no. 10, pp. 901–908, 2011.
  39. T. M. Frayling, N. J. Timpson, M. N. Weedon et al., “A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity,” Science, vol. 316, no. 5826, pp. 889–894, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. J. E. Cecil, R. Tavendale, P. Watt, M. M. Hetherington, and C. N. A. Palmer, “An obesity-associated FTO gene variant and increased energy intake in children,” New England Journal of Medicine, vol. 359, no. 24, pp. 2558–2566, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. C. S. Fox, Y. Liu, C. C. White et al., et al., “Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women,” PLoS Genetics, vol. 8, no. 5, Article ID e1002695, 2012.
  42. J. Yang, R. J. Loos, J. E. Powell et al., et al., “FTO genotype is associated with phenotypic variability of body mass index,” Nature, vol. 490, no. 7419, pp. 267–272, 2012.
  43. A. Li and D. Meyre, “Challenges in reproducibility of genetic association studies: lessons learned from the obesity field,” International Journal of Obesity, 2012. View at Publisher · View at Google Scholar
  44. J. Bressler, W. H. Kao, J. S. Pankow, and E. Boerwinkle, “Risk of type 2 diabetes and obesity is differentially associated with variation in FTO in whites and African-Americans in the ARIC study,” PLoS ONE, vol. 5, no. 5, Article ID e10521, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. S. D. Rees, M. Islam, M. Z. I. Hydrie et al., “An FTO variant is associated with Type2 diabetes in South Asian populations after accounting for body mass index and waist circumference,” Diabetic Medicine, vol. 28, no. 6, pp. 673–680, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. F. Ji, M. S. Sharpley, O. Derbeneva et al., et al., “Mitochondrial DNA variant associated with Leber hereditary optic neuropathy and high-altitude Tibetans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 19, pp. 7391–7396, 2012.
  47. R. J. Loos, C. M. Lindgren, S. Li et al., et al., “Common variants near MC4R are associated with fat mass, weight and risk of obesity,” Nature Genetics, vol. 40, no. 6, pp. 768–775, 2008.
  48. R. Hardy, A. K. Wills, A. Wong et al., “Life course variations in the associations between FTO and MC4R gene variants and body size,” Human Molecular Genetics, vol. 19, no. 3, Article ID ddp504, pp. 545–552, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. I. S. Farooqi, J. M. Keogh, G. S. H. Yeo, E. J. Lank, T. Cheetham, and S. O'Rahilly, “Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene,” New England Journal of Medicine, vol. 348, no. 12, pp. 1085–1095, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. M. D. Fesinmeyer, K. E. North, M. D. Ritchie et al., et al., “Genetic risk factors for BMI and obesity in an ethnically diverse population: results from the population architecture using genomics and epidemiology (PAGE) study,” Obesity, 2012. View at Publisher · View at Google Scholar
  51. S. F. A. Grant, J. P. Bradfield, H. Zhang et al., “Investigation of the locus near MC4R with childhood obesity in Americans of European and African ancestry,” Obesity, vol. 17, no. 7, pp. 1461–1465, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. S. J. Kang, C. W. Chiang, C. D. Palmer et al., “Genome-wide association of anthropometric traits in African- and African-derived populations,” Human Molecular Genetics, vol. 19, no. 13, Article ID ddq154, pp. 2725–2738, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. G. Liu, H. Zhu, V. Lagou et al., “Common variants near melanocortin 4 receptor are associated with general and visceral adiposity in European- and African-American youth,” Journal of Pediatrics, vol. 156, no. 4, pp. 598–605, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. C. J. Willer, E. K. Speliotes, R. J. Loos et al., et al., “Six new loci associated with body mass index highlight a neuronal influence on body weight regulation,” Nature Genetics, vol. 41, no. 1, pp. 25–34, 2009.
  55. M. Schäfer, A. U. Bräuer, N. E. Savaskan, F. G. Rathjen, and T. Brümmendorf, “Neurotractin/kilon promotes neurite outgrowth and is expressed on reactive astrocytes after entorhinal cortex lesion,” Molecular and Cellular Neuroscience, vol. 29, no. 4, pp. 580–590, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. E. G. Bochukova, N. Huang, J. Keogh et al., “Large, rare chromosomal deletions associated with severe early-onset obesity,” Nature, vol. 463, no. 7281, pp. 666–670, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Jurvansuu, Y. Zhao, D. S. Y. Leung et al., “Transmembrane protein 18 enhances the tropism of neural stem cells for glioma cells,” Cancer Research, vol. 68, no. 12, pp. 4614–4622, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold, and J. M. Friedman, “Positional cloning of the mouse obese gene and its human homologue,” Nature, vol. 372, no. 6505, pp. 425–432, 1994. View at Publisher · View at Google Scholar · View at Scopus
  59. M. C. Ng, J. M. Hester, M. R. Wing et al., “Genome-wide association of BMI in African Americans,” Obesity, vol. 20, no. 3, pp. 622–627, 2012.
  60. W. Zhao, N. E. Wineinger, H. K. Tiwari et al., “Copy number variations associated with obesity-related traits in African Americans: a joint analysis between GENOA and HyperGEN,” Obesity, vol. 20, no. 12, pp. 2431–2437, 2012. View at Publisher · View at Google Scholar
  61. C. Q. Lai, K. L. Tucker, S. Choudhry et al., “Population admixture associated with disease prevalence in the Boston Puerto Rican health study,” Human Genetics, vol. 125, no. 2, pp. 199–209, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. American Diabetes Association, “Diagnosis and classification of diabetes mellitus,” Diabetes Care, vol. 35, supplement 1, pp. S64–S71, 2012. View at Publisher · View at Google Scholar
  63. W. H. Herman, Y. Ma, G. Uwaifo et al., “Differences in A1C by race and ethnicity among patients with impaired glucose tolerance in the diabetes prevention program,” Diabetes Care, vol. 30, no. 10, pp. 2453–2457, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. N. M. Maruthur, W. H. Kao, J. M. Clark et al., “Does genetic ancestry explain higher values of glycated hemoglobin in African Americans?” Diabetes, vol. 60, no. 9, pp. 2434–2438, 2011.
  65. J. K. Bower, F. L. Brancati, and E. Selvin, “No ethnic differences in the association of glycated hemoglobin with retinopathy: the national health and nutrition examination survey 2005–2008,” Diabetes Care, 2012. View at Publisher · View at Google Scholar
  66. S. Dagogo-Jack, “Pitfalls in the use of HbA 1c as a diagnostic test: the ethnic conundrum,” Nature Reviews Endocrinology, vol. 6, no. 10, pp. 589–593, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. J. L. Grimsby, B. C. Porneala, J. L. Vassy et al., et al., “Race-ethnic differences in the association of genetic loci with HbA1c levels and mortality in U.S. adults: the third national health and nutrition examination survey (NHANES III),” BMC Medical Genetics, vol. 13, no. 1, article 30, 2012.
  68. S. Dagogo-Jack, “Predicting diabetes: our relentless quest for genomic nuggets,” Diabetes Care, vol. 35, no. 2, pp. 193–195, 2012.
  69. S. Dagogo-Jack, “Comment on: Maruthur et al. does genetic ancestry explain higher values of glycated hemoglobin in African Americans? Diabetes 2011, 60: 2434–2438,” Diabetes, vol. 61, no. 1, article e1, 2012.
  70. S. F. A. Grant, G. Thorleifsson, I. Reynisdottir et al., “Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes,” Nature Genetics, vol. 38, no. 3, pp. 320–323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. F. Yi, P. L. Brubaker, and T. Jin, “TCF-4 mediates cell type-specific regulation of proglucagon gene expression by β-catenin and glycogen synthase kinase-3β,” Journal of Biological Chemistry, vol. 280, no. 2, pp. 1457–1464, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. S. E. Humphries, D. Gable, J. A. Cooper et al., “Common variants in the TCF7L2 gene and predisposition to type 2 diabetes in UK European Whites, Indian Asians and Afro-Caribbean men and women,” Journal of Molecular Medicine, vol. 84, no. 12, pp. 1005–1014, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. J. C. Florez, K. A. Jablonski, N. Bayley et al., “TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program,” New England Journal of Medicine, vol. 355, no. 3, pp. 241–250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. M. M. Sale, S. G. Smith, J. C. Mychaleckyj et al., “Variants of the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes in an African-American population enriched for nephropathy,” Diabetes, vol. 56, no. 10, pp. 2638–2642, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. J. P. Lewis, N. D. Palmer, P. J. Hicks et al., “Association analysis in African Americans of European-derived type 2 diabetes single nucleotide polymorphisms from whole-genome association studies,” Diabetes, vol. 57, no. 8, pp. 2220–2225, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. D. Dabelea, L. M. Dolan, R. D'Agostino et al., “Association testing of TCF7L2 polymorphisms with type 2 diabetes in multi-ethnic youth,” Diabetologia, vol. 54, no. 3, pp. 535–539, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. Y. Yan, K. E. North, C. M. Ballantyne et al., “Transcription factor 7-like 2 (TCF7L2) polymorphism and context-specific risk of type 2 diabetes in African American and caucasian adults: the atherosclerosis risk in communities study,” Diabetes, vol. 58, no. 1, pp. 285–289, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Cauchi, Y. El Achhab, H. Choquet et al., “TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis,” Journal of Molecular Medicine, vol. 85, no. 7, pp. 777–782, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Helgason, S. Pálsson, G. Thorleifsson et al., “Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution,” Nature Genetics, vol. 39, no. 2, pp. 218–225, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. J. B. Maller, G. McVean, J. Byrnes et al., “Bayesian refinement of association signals for 14 loci in 3 common diseases,” Nature Genetics, vol. 44, no. 12, pp. 1294–1301, 2012. View at Publisher · View at Google Scholar
  81. J. Munoz, K. H. Lok, B. A. Gower et al., “Polymorphism in the transcription factor 7-like 2 (TCF7L2) gene is associated with reduced insulin secretion in nondiabetic women,” Diabetes, vol. 55, no. 12, pp. 3630–3634, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. N. D. Palmer, A. B. Lehtinen, C. D. Langefeld et al., “Association of TCF7L2 gene polymorphisms with reduced acute insulin response in Hispanic Americans,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 1, pp. 304–309, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. S. C. Elbein, W. S. Chu, S. K. Das et al., “Transcription factor 7-like 2 polymorphisms and type 2 diabetes, glucose homeostasis traits and gene expression in US participants of European and African descent,” Diabetologia, vol. 50, no. 8, pp. 1621–1630, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. K. M. Waters, D. O. Stram, M. T. Hassanein et al., “Consistent association of type 2 diabetes risk variants found in europeans in diverse racial and ethnic groups,” PLoS Genetics, vol. 6, no. 8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. C. A. Haiman, M. D. Fesinmeyer, K. L. Spencer et al., et al., “Consistent directions of effect for established type 2 diabetes risk variants across populations: the population architecture using Genomics and Epidemiology (PAGE) Consortium,” Diabetes, vol. 61, no. 6, pp. 1642–1647, 2012.
  86. J. N. Cooke, M. C. Ng, N. D. Palmer et al., “Genetic risk assessment of type 2 diabetes-associated polymorphisms in African Americans,” Diabetes Care, vol. 35, no. 2, pp. 287–292, 2012.
  87. K. A. Langberg, L. Ma, N. K. Sharma et al., et al., “Single nucleotide polymorphisms in JAZF1 and BCL11A gene are nominally associated with type 2 diabetes in African-American families from the GENNID study,” Journal of Human Genetics, vol. 57, no. 1, pp. 57–61, 2012.
  88. P. Liu, J. R. Keller, M. Ortiz et al., “Bcl11a is essential for normal lymphoid development,” Nature Immunology, vol. 4, no. 6, pp. 525–532, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. H. Li, J. Wang, G. Mor, and J. Sklar, “A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells,” Science, vol. 321, no. 5894, pp. 1357–1361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. T. M. Strom, K. Hörtnagel, S. Hofmann et al., “Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein,” Human Molecular Genetics, vol. 7, no. 13, pp. 2021–2028, 1998. View at Scopus
  91. N. D. Palmer, M. O. Goodarzi, C. D. Langefeld et al., “Quantitative trait analysis of type 2 diabetes susceptibility loci identified from whole genome association studies in the insulin resistance atherosclerosis family study,” Diabetes, vol. 57, no. 4, pp. 1093–1100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. N. D. Palmer, C. W. McDonough, P. J. Hicks et al., et al., “A genome-wide association search for type 2 diabetes genes in African Americans,” PLoS ONE, vol. 7, no. 1, Article ID e29202, 2012.
  93. G. Chen, A. Bentley, A. Adeyemo et al., “Genome-wide association study identifies novel loci association with fasting insulin and insulin resistance in African Americans,” Human Molecular Genetics, vol. 21, no. 20, pp. 4530–4536, 2012.
  94. R. Chen, E. Corona, M. Sikora et al., “Type 2 diabetes risk alleles demonstrate extreme directional differentiation among human populations, compared to other diseases,” PLoS Genetics, vol. 8, no. 4, Article ID e1002621, 2012.
  95. G. Genovese, D. J. Friedman, M. D. Ross et al., “Association of trypanolytic ApoL1 variants with kidney disease in African Americans,” Science, vol. 329, no. 5993, pp. 841–845, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. C. Wilson, “Health policy: endocrine health for all-finding and eliminating health disparities in endocrine disorders,” Nature Reviews Endocrinology, vol. 8, no. 9, p. 503, 2012. View at Publisher · View at Google Scholar
  97. N. D. Palmer, J. M. Hester, S. S. An et al., “Resequencing and analysis of variation in the TCF7L2 gene in African Americans suggests that SNP rs7903146 is the causal diabetes susceptibility variant,” Diabetes, vol. 60, no. 2, pp. 662–668, 2011. View at Publisher · View at Google Scholar · View at Scopus