About this Journal Submit a Manuscript Table of Contents
Journal of Obesity
Volume 2013 (2013), Article ID 628428, 6 pages
http://dx.doi.org/10.1155/2013/628428
Review Article

Measuring Body Composition in Individuals with Intellectual Disability: A Scoping Review

Department of Human Kinetics, St. Francis Xavier University, P.O. Box 5000, Antigonish, NS, Canada B2G 2W5

Received 29 November 2012; Revised 3 March 2013; Accepted 19 March 2013

Academic Editor: Analiza M. Silva

Copyright © 2013 Amanda Faith Casey. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Yamaki, “Body weight status among adults with intellectual disability in the community,” Mental Retardation, vol. 43, pp. 1–10, 2005. View at Publisher · View at Google Scholar
  2. D. W. Haslam and W. P. James, “Obesity,” The Lancet, vol. 366, pp. 1197–1209, 2005. View at Publisher · View at Google Scholar
  3. D. Haslam, N. Sattar, and M. Lean, “ABC of obesity: obesity-time to wake up,” British Medical Journal, vol. 333, pp. 640–642, 2009.
  4. D. P. Williams, S. B. Going, T. G. Lohman, et al., “Body fatness and risk for elevated blood pressure, total cholesterol, and serum lipoprotein ratios in children and adolescents,” American Journal of Public Health, vol. 82, pp. 358–363, 1992.
  5. World Health Organization, Physical Status: The Use and Interpretation of Anthropometry, WHO Technical Report Series, World Health Organization, Geneva, Switzerland, 1995.
  6. T. S. de Lopes, D. M. Ferreira, R. A. Pereira, G. V. da Veiga, and V. M. R. de Marins, “Assessment of anthropometric indexes of children and adolescents with Down syndrome,” Jornal de Pediatria, vol. 84, no. 4, pp. 350–356, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. S. B. Heymsfield, T. G. Lohman, Z. Wang, and S. B. Going, Human Body Composition, Human Kinetics, Champaign, Ill, USA, 2005.
  8. R. Y. T. Sung, P. Lau, P. K. W. Lam, and E. A. S. Nelson, “Measurement of body fat using legtoleg impedance,” Archives of Disease in Childhood, vol. 85, pp. 263–267, 2001. View at Publisher · View at Google Scholar
  9. J. Eisenkölbl, M. Kartasurya, and K. Widhalm, “Underestimation of percentage fat mass measured by bioelectrical impedance analysis compared to dual energy X-ray absorptiometry method in obese children,” European Journal of Clinical Nutrition, vol. 55, no. 6, pp. 423–429, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Lazzer, G. Bedogni, F. Agosti, A. de Col, D. Mornati, and A. Sartorio, “Comparison of dual-energy X-ray absorptiometry, air displacement plethysmography and bioelectrical impedance analysis for the assessment of body composition in severely obese Caucasian children and adolescents,” British Journal of Nutrition, vol. 100, no. 4, pp. 918–924, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Deurenberg, “Limitations of the bioelectrical impedance method for the assessment of body fat in severe obesity,” American Journal of Clinical Nutrition, vol. 64, no. 3, pp. 449–452, 1996. View at Scopus
  12. A. F. Casey and R. Rasmussen, “Reduction measures and percent body fat in individuals with intellectual disabilities: a scoping review,” Disabil Health, vol. 6, pp. 2–7, 2013.
  13. D. Levac, H. Colquhoun, and K. K. O'Brien, “Scoping studies: advancing the methodology,” Implementation Science, vol. 5, pp. 65–69, 2010. View at Publisher · View at Google Scholar
  14. H. Arksey and L. O'Malley, “Scoping studies: towards a methodological framework,” International Journal of Social Research Methodology, vol. 8, pp. 19–32, 2005. View at Publisher · View at Google Scholar
  15. American Association on Intellectual and Developmental Disabilitie, Intellectual Disability, 2011, http://www.aaidd.org/content_96.cfm?navID=20.
  16. R. Rieken, J. V. B. Goudoever, H. Schierbeek et al., “Measuring body composition and energy expenditure in children with severe neurologic impairment and intellectual disability,” The American Journal of Clinical Nutrition, vol. 94, pp. 759–766, 2011. View at Publisher · View at Google Scholar
  17. V. A. Temple, J. W. Walkley, and K. Greenway, “Body mass index as an indicator of adiposity among adults with intellectual disability,” Journal of Intellectual and Developmental Disability, vol. 35, no. 2, pp. 116–120, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. C. J. F. Verstraelen, M. A. Maaskant, A. G. M. van Knijff-Raeven, L. M. G. Curfs, and H. M. J. van Schrojenstein Lantman-de Valk, “Weighting the weights: agreement among anthropometric indicators identifying the weight status of people with intellectual disabilities,” Journal of Applied Research in Intellectual Disabilities, vol. 22, no. 3, pp. 307–313, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Waninge, W. van der Weide, I. J. Evenhuis, R. van Wijck, and C. P. van der Schans, “Feasibility and reliability of body composition measurements in adults with severe intellectual and sensory disabilities,” Journal of Intellectual Disability Research, vol. 53, no. 4, pp. 377–388, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Gonzalez-Aguero, G. Vicente-Rodriguez, I. Ara, L. A. Moreno, and J. A. Casajus, “Accuracy of prediction equations to assess percentage of body fat in children and adolescents with Down syndrome compared to air displacement plethysmography,” Research in Developmental Disabilities, vol. 32, pp. 1764–1769, 2011. View at Publisher · View at Google Scholar
  21. P. C. Usera, J. T. Foley, and J. Yun, “Cross-validation of field-based assessments of body composition for individuals with Down syndrome,” Adapted Physical Activity Quarterly, vol. 22, no. 2, pp. 198–206, 2005. View at Scopus
  22. A. S. Jackson and M. L. Pollock, “Generalized equations for predicting body density of men,” British Journal of Nutrition, vol. 40, pp. 497–504, 1978. View at Publisher · View at Google Scholar
  23. L. E. Kelly, J. H. Rimmer, and J. Rosentswieg, “Accuracy of anthropometric equations for estimating body composition of mentally retarded adults,” American Journal of Mental Deficiency, vol. 91, no. 6, pp. 626–632, 1987. View at Scopus
  24. T. G. Lohman, “Skinfolds and body density and their relation to body fatness: a review,” American Journal of Human Biology, vol. 53, pp. 181–225, 1981.
  25. A. S. Jackson, M. L. Pollock, and A. Ward, “Generalized equations for predicting body density of women,” Medicine & Science in Sports & Exercise, vol. 12, pp. 175–181, 1980.
  26. J. V. G. A. Durnin and J. Womersley, “Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years,” British Journal of Nutrition, vol. 32, no. 1, pp. 77–97, 1974. View at Scopus
  27. M. J. Gurka, M. N. Kuperminc, M. G. Busby et al., “Assessment and correction of skinfold thickness equations in estimating body fat in children with cerebral palsy,” Developmental Medicine and Child Neurology, vol. 52, no. 2, pp. e35–e41, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. P. B. Pencharz and M. Azcue, “Use of bioelectrical impedance analysis measurements in the clinical management of malnutrition,” The American Journal of Clinical Nutrition, vol. 64, supplement 3, pp. 485S–488S, 1996.
  29. M. H. Slaughter, T. G. Lohman, R. A. Boileau et al., “Skinfold equations for estimations of body fatness in children and youth,” Human Biology, vol. 60, no. 5, pp. 709–723, 1988. View at Scopus
  30. J. L. Johnston, M. S. Leong, E. G. Checkland, P. C. Zuberbuhler, P. R. Conger, and H. A. Quinney, “Body fat assessed from body density and estimated from skinfold thickness in normal children and children with cystic fibrosis,” American Journal of Clinical Nutrition, vol. 48, no. 6, pp. 1362–1366, 1988. View at Scopus
  31. C. D. G. Brook, “Determination of body composition of children from skinfold measurements,” Archives of Disease in Childhood, vol. 46, pp. 182–184, 1971. View at Publisher · View at Google Scholar
  32. Y. Schutz, U. U. Kyle, and C. Pichard, “Fat-free mass index and fat mass index percentiles in Caucasians aged 18–98 years,” International Journal of Obesity and Related Metabolic Disorders, vol. 26, pp. 953–960, 2006.
  33. S. Zhu, Z. Wang, S. Heshka, M. Heo, M. S. Faith, and S. B. Heymsfield, “Waist circumference and obesity-associated risk factors among whites in the third National Health and Nutrition Examination Survey: clinical action thresholds,” American Journal of Clinical Nutrition, vol. 76, no. 4, pp. 743–749, 2002. View at Scopus
  34. K. H. Pitetti and D. M. Tan, “Effects of a minimally supervised exercise program for mentally retarded adults,” Medicine and Science in Sports and Exercise, vol. 23, no. 5, pp. 594–601, 1991. View at Scopus
  35. M. A. McCrory, T. D. Gomez, E. M. Bernauer, and P. A. Mole, “Evaluation of a new air displacement plethysmograph for measuring human body composition,” Medicine and Science in Sports and Exercise, vol. 27, no. 12, pp. 1686–1691, 1995. View at Scopus
  36. J. Hosking, B. S. Metcalf, A. N. Jeffery, L. D. Voss, and T. J. Wilkin, “Validation of foot-to-foot bioelectrical impedance analysis with dual-energy X-ray absorptiometry in the assessment of body composition in young children: the EarlyBird cohort,” British Journal of Nutrition, vol. 96, no. 6, pp. 1163–1168, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. B. M. Prior, K. J. Cureton, C. M. Modlesky et al., “In vivo validation of whole body composition estimates from dual-energy X-ray absorptiometry,” Journal of Applied Physiology, vol. 83, no. 2, pp. 623–630, 1997. View at Scopus
  38. C. M. Avesani, S. A. Draibe, M. A. Kamimura et al., “Assessment of body composition by dual energy X-ray absorptiometry, skinfold thickness and creatinine kinetics in chronic kidney disease patients,” Nephrology Dialysis Transplantation, vol. 19, no. 9, pp. 2289–2295, 2004. View at Publisher · View at Google Scholar · View at Scopus