About this Journal Submit a Manuscript Table of Contents
Journal of Obesity
Volume 2013 (2013), Article ID 729515, 10 pages
http://dx.doi.org/10.1155/2013/729515
Clinical Study

The Impact of Rapid Weight Loss on Oxidative Stress Markers and the Expression of the Metabolic Syndrome in Obese Individuals

1Centre for Preventive Cardiology, 3rd Department of Internal Medicine, General Teaching Hospital and Charles University in Prague, U Nemocnice 2, 128 08 Prague 2, Czech Republic
2Center for Cardiovascular Disease Prevention, Methodist DeBakey Heart Center, and Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA

Received 27 August 2013; Revised 28 October 2013; Accepted 18 November 2013

Academic Editor: David Allison

Copyright © 2013 Eva Tumova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. York, S. Rössner, I. Caterson et al., “Prevention Conference VII: obesity, a worldwide epidemic related to heart disease and stroke: group I: worldwide demographics of obesity,” Circulation, vol. 110, no. 18, pp. E463–E470, 2004. View at Scopus
  2. K. M. Flegal, M. D. Carroll, C. L. Ogden, and C. L. Johnson, “Prevalence and trends in obesity among US adults, 1999-2000,” Journal of the American Medical Association, vol. 288, no. 14, pp. 1723–1727, 2002. View at Scopus
  3. T. Kelly, W. Yang, C.-S. Chen, K. Reynolds, and J. He, “Global burden of obesity in 2005 and projections to 2030,” International Journal of Obesity, vol. 32, no. 9, pp. 1431–1437, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. C. J. Girman, T. Rhodes, M. Mercuri et al., “The metabolic syndrome and risk of major coronary events in the Scandinavian Simvastatin Survival Study (4S) and the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS),” American Journal of Cardiology, vol. 93, no. 2, pp. 136–141, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. K. J. Hunt, R. G. Resendez, K. Williams, S. M. Haffner, and M. P. Stern, “National Cholesterol Education Program versus World Health Organization metabolic syndrome in relation to all-cause and cardiovascular mortality in the San Antonio heart study,” Circulation, vol. 110, no. 10, pp. 1251–1257, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. B. H. Goodpaster, D. E. Kelley, R. R. Wing, A. Meier, and F. L. Thaete, “Effects of weight loss on regional fat distribution and insulin sensitivity in obesity,” Diabetes, vol. 48, no. 4, pp. 839–847, 1999. View at Scopus
  7. D. E. Kelley, B. Goodpaster, R. R. Wing, and J.-A. Simoneau, “Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss,” American Journal of Physiology: Endocrinology and Metabolism, vol. 277, no. 6, pp. E1130–E1141, 1999. View at Scopus
  8. Y.-W. Park, S. Zhu, L. Palaniappan, S. Heshka, M. R. Carnethon, and S. B. Heymsfield, “The metabolic syndrome: prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988–1994,” Archives of Internal Medicine, vol. 163, no. 4, pp. 427–436, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. E. S. Ford, W. H. Giles, and W. H. Dietz, “Prevalence of the metabolic syndrome among US adults: findings from the Third National Health and Nutrition Examination Survey,” Journal of the American Medical Association, vol. 287, no. 3, pp. 356–359, 2002. View at Scopus
  10. A. Galassi, K. Reynolds, and J. He, “Metabolic syndrome and risk of cardiovascular disease: a meta-analysis,” American Journal of Medicine, vol. 119, no. 10, pp. 812–819, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Hopps, D. Noto, G. Caimi, and M. R. Averna, “A novel component of the metabolic syndrome: the oxidative stress,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 20, no. 1, pp. 72–77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. A. Leopold and J. Loscalzo, “Oxidative risk for atherothrombotic cardiovascular disease,” Free Radical Biology and Medicine, vol. 47, no. 12, pp. 1673–1706, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. G. P. Van Guilder, G. L. Hoetzer, J. J. Greiner, B. L. Stauffer, and C. A. DeSouza, “Influence of metabolic syndrome on biomarkers of oxidative stress and inflammation in obese adults,” Obesity, vol. 14, no. 12, pp. 2127–2131, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Esterbauer, J. Gebicki, H. Puhl, and G. Jurgens, “The role of lipid peroxidation and antioxidants in oxidative modification of LDL,” Free Radical Biology and Medicine, vol. 13, no. 4, pp. 341–390, 1992. View at Publisher · View at Google Scholar · View at Scopus
  15. U. P. Steinbrecher, S. Parthasarathy, and D. S. Leake, “Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 12, pp. 3883–3887, 1984. View at Scopus
  16. J. A. Berliner, M. C. Territo, A. Sevanian et al., “Minimally modified low density lipoprotein stimulates monocyte endothelial interactions,” Journal of Clinical Investigation, vol. 85, no. 4, pp. 1260–1266, 1990. View at Scopus
  17. P. T. Shih, M. J. Elices, Z. T. Fang et al., “Minimally modified low-density lipoprotein induces monocyte adhesion to endothelial connecting segment-1 by activating β1 integrin,” Journal of Clinical Investigation, vol. 103, no. 5, pp. 613–625, 1999. View at Scopus
  18. F. Liao, J. A. Berliner, M. Mehrabian et al., “Minimally modified low density lipoprotein is biologically active in vivo in mice,” Journal of Clinical Investigation, vol. 87, no. 6, pp. 2253–2257, 1991. View at Scopus
  19. M. Kusuhara, A. Chait, A. Cader, and B. C. Berk, “Oxidized LDL stimulates mitogen-activated protein kinases in smooth muscle cells and macrophages,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 17, no. 1, pp. 141–148, 1997. View at Scopus
  20. Y. H. H. Yi Hui Huang, J. Ronnelid, and J. Frostegard, “Oxidized LDL induces enhanced antibody formation and MHC class II- dependent IFN-γ production in lymphocytes from healthy individuals,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 15, no. 10, pp. 1577–1583, 1995. View at Scopus
  21. P. Holvoet, D.-H. Lee, M. Steffes, M. Gross, and D. R. Jacobs Jr., “Association between circulating oxidized low-density lipoprotein and incidence of the metabolic syndrome,” Journal of the American Medical Association, vol. 299, no. 19, pp. 2287–2293, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. R. C. Hoogeveen, C. M. Ballantyne, H. Bang et al., “Circulating oxidised low-density lipoprotein and intercellular adhesion molecule-1 and risk of type 2 diabetes mellitus: the Atherosclerosis Risk in Communities Study,” Diabetologia, vol. 50, no. 1, pp. 36–42, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Hulthe, L. Bokemark, J. Wikstrand, and B. Fagerberg, “The metabolic syndrome, LDL particle size, and atherosclerosis: the atherosclerosis and insulin resistance (AIR) study,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 9, pp. 2140–2147, 2000. View at Scopus
  24. D. Steinberg, “Antioxidants and atherosclerosis. A current assessment,” Circulation, vol. 84, no. 3, pp. 1420–1425, 1991. View at Scopus
  25. K. E. Stremler, D. M. Stafforini, S. M. Prescott, and T. M. McIntyre, “Human plasma platelet-activating factor acetylhydrolase: oxidatively fragmented phospholipids as substrates,” Journal of Biological Chemistry, vol. 266, no. 17, pp. 11095–11103, 1991. View at Scopus
  26. U. P. Steinbrecher and P. H. Pritchard, “Hydrolysis of phosphatidylcholine during LDL oxidation is mediated by platelet-activating factor acetylhydrolase,” Journal of Lipid Research, vol. 30, no. 3, pp. 305–315, 1989. View at Scopus
  27. B. Davis, G. Koster, L. J. Douet et al., “Electrospray ionization mass spectrometry identifies substrates and products of lipoprotein-associated phospholipase A2 in oxidized human low density lipoprotein,” Journal of Biological Chemistry, vol. 283, no. 10, pp. 6428–6437, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. A. D. Tselepis and M. J. Chapman, “Inflammation, bioactive lipids and atherosclerosis: potential roles of a lipoprotein-associated phospholipase A2, platelet activating factor-acetylhydrolase,” Atherosclerosis Supplements, vol. 3, no. 4, pp. 57–68, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. I. Gazi, E. S. Lourida, T. Filippatos, V. Tsimihodimos, M. Elisaf, and A. D. Tselepis, “Lipoprotein-associated phospholipase A2 activity is a marker of small, dense LDL particles in human plasma,” Clinical Chemistry, vol. 51, no. 12, pp. 2264–2273, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. J. W. Gaubatz, B. K. Gillard, J. B. Massey et al., “Dynamics of dense electronegative low density lipoproteins and their preferential association with lipoprotein phospholipase A2,” Journal of Lipid Research, vol. 48, no. 2, pp. 348–357, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Persson, B. Hedblad, J. J. Nelson, and G. Berglund, “Elevated Lp-PLA2 levels add prognostic information to the metabolic syndrome on incidence of cardiovascular events among middle-aged nondiabetic subjects,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 6, pp. 1411–1416, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. C. M. Ballantyne, R. C. Hoogeveen, H. Bang et al., “Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) Study,” Circulation, vol. 109, no. 7, pp. 837–842, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. S. J. Klebanoff, “Myeloperoxidase: friend and foe,” Journal of Leukocyte Biology, vol. 77, no. 5, pp. 598–625, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. A. C. Carr, M. R. McCall, and B. Frei, “Oxidation of LDL by myeloperoxidase and reactive nitrogen species: reaction pathways and antioxidant protection,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 7, pp. 1716–1725, 2000. View at Scopus
  35. L. J. Hazell and R. Stocker, “Oxidation of low-density lipoprotein with hypochlorite causes transformation of the lipoprotein into a high-uptake form for macrophages,” Biochemical Journal, vol. 290, no. 1, pp. 165–172, 1993. View at Scopus
  36. L. J. Hazell, M. J. Davies, and R. Stocker, “Secondary radicals derived from chloramines of apolipoprotein B-100 contribute to HOCl-induced lipid peroxidation of low-density lipoproteins,” Biochemical Journal, vol. 339, no. 3, pp. 489–495, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. J. M. Upston, A. C. Terentis, and R. Stocker, “Tocopherol-mediated peroxidation of lipoproteins: implications for vitamin E as a potential antiatherogenic supplement,” The FASEB Journal, vol. 13, no. 9, pp. 977–994, 1999. View at Scopus
  38. J. A. Chesney, J. R. Mahoney Jr., and J. W. Eaton, “A spectrophotometric assay for chlorine-containing compounds,” Analytical Biochemistry, vol. 196, no. 2, pp. 262–266, 1991. View at Publisher · View at Google Scholar · View at Scopus
  39. M. I. Savenkova, D. M. Mueller, and J. W. Heinecke, “Tyrosyl radical generated by myeloperoxidase is a physiological catalyst for the initiation of lipid peroxidation in low density lipoprotein,” Journal of Biological Chemistry, vol. 269, no. 32, pp. 20394–20400, 1994. View at Scopus
  40. B. Shao, M. N. Oda, J. F. Oram, and J. W. Heinecke, “Myeloperoxidase: an inflammatory enzyme for generating dysfunctional high density lipoprotein,” Current Opinion in Cardiology, vol. 21, no. 4, pp. 322–328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. M. C. Meuwese, E. S. G. Stroes, S. L. Hazen et al., “Serum myeloperoxidase levels are associated with the future risk of coronary artery disease in apparently healthy individuals. The EPIC-Norfolk prospective population study,” Journal of the American College of Cardiology, vol. 50, no. 2, pp. 159–165, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. C. C. Case, P. H. Jones, K. Nelson, E. O. Smith, and C. M. Ballantyne, “Impact of weight loss on the metabolic syndrome,” Diabetes, Obesity and Metabolism, vol. 4, no. 6, pp. 407–414, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. S. M. Grundy, J. I. Cleeman, S. R. Daniels et al., “Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement,” Circulation, vol. 112, no. 17, pp. 2735–2752, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. I. R. White, P. Royston, and A. M. Wood, “Multiple imputation using chained equations: issues and guidance for practice,” Statistics in Medicine, vol. 30, no. 4, pp. 377–399, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. D. R. Matthews, J. P. Hosker, and A. S. Rudenski, “Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985. View at Scopus
  46. T. Tzotzas, T. D. Filippatos, A. Triantos, E. Bruckert, A. D. Tselepis, and D. N. Kiortsis, “Effects of a low-calorie diet associated with weight loss on lipoprotein-associated phospholipase A2 (Lp-PLA2) activity in healthy obese women,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 18, no. 7, pp. 477–482, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. U. Hanusch-Enserer, G. Zorn, J. Wojta et al., “Non-conventional markers of atherosclerosis before and after gastric banding surgery,” European Heart Journal, vol. 30, no. 12, pp. 1516–1524, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. G. L. Pierce, S. D. Beske, B. R. Lawson et al., “Weight loss alone improves conduit and resistance artery endothelial function in young and older overweight/obese adults,” Hypertension, vol. 52, no. 1, pp. 72–79, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. M.-J. Shin, Y. J. Hyun, O. Y. Kim, J. Y. Kim, Y. Jang, and J. H. Lee, “Weight loss effect on inflammation and LDL oxidation in metabolically healthy but obese (MHO) individuals: low inflammation and LDL oxidation in MHO women,” International Journal of Obesity, vol. 30, no. 10, pp. 1529–1534, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. C. K. Roberts, D. Won, S. Pruthi et al., “Effect of a short-term diet and exercise intervention on oxidative stress, inflammation, MMP-9, and monocyte chemotactic activity in men with metabolic syndrome factors,” Journal of Applied Physiology, vol. 100, no. 5, pp. 1657–1665, 2006. View at Publisher · View at Google Scholar · View at Scopus